战伤病历报告
01-乌克兰中受伤的战斗患者和战争手臂受枪伤
03-Ukraine- Apparent Russian Cluster Munition Attack
02-报告病例俄罗斯-乌克兰战争中四肢血管损伤患者的突发性动脉分流术:病例报告
05-乌克兰-明显的俄罗斯集束弹药攻击_人权观察
06-报告病例俄罗斯-乌克兰战争中四肢血管损伤患者的突发性动脉分流术:病例报告
08-重建的新方法屈肌表面的枪伤缺陷指动脉正常横支对指趾(远端)指骨的影响俄乌战争中战斗伤员1例报告_1_8_translate
08-A new approach for reconstruction of the gunshot defect of the flexor surface of the ungual distal phalanx by the proper transverse branch of the digital artery a case report of combat patient injured in the Russo Ukrainian war
04-乌克兰-集束炸弹造成平民死亡
04-Ukraine- Civilian Deaths from Cluster Munitions
09-利用视频胸腔镜手术和磁性工具从肺中取出铁磁碎片——乌克兰战争中受伤战斗病人一例报告_1_6_translate
09-Retrieval of ferromagnetic fragments from the lung using video-assisted thoracoscopic surgery and magnetic tool a case report of combat patient injured in the war in Ukraine
07-俄乌战争中作战伤员严重肱骨缺损的处理_1_22_translate
07-Management of severe defects of humerus in combat patients injured in Russo-Ukrainian war
11-弹丸碎片化后意外多发腹腔损伤3例报告
11-Unexpected multiple intra-abdominal injuries after projectile fragmentation report of three cases
10-报告病例俄罗斯-乌克兰战争中四肢血管损伤患者的突发性动脉分流术:病例报告
13-通过转化科学过程推进院前大规模伤亡反应的科学研究- T1范围文献综述阶段
13-Advancing the scientific study of prehospital mass casualty response through a Translational Science process- the T1 scoping literature review stage
14-利用视频胸腔镜手术和磁性工具从肺部提取铁磁碎片——乌克兰战争中受伤战斗病人的一例报告
14-Retrieval of ferromagnetic fragments from the lung using video-assisted thoracoscopic surgery and magnetic tool- a case report of combat patient injured in the war in Ukraine
12-ADVANCE-TBI study protocol- traumatic brain injury outcomes in UK military personnel serving in Afghanistan between 2003 and 2014 - a longitudinal cohort study.
12-ADVANCE-TBI研究方案- 2003年至2014年在阿富汗服役的英国军事人员的创伤性脑损伤结果-一项纵向队列研究。
空中作战伤后部队中的一名特种作战候选人:报告案例
行动后战术战斗伤亡护理报告TACTICAL COMBAT CASUALTY CARE AFTER ACTION REPORT (TCCC AAR)
医疗记录补充医疗数据MEDICAL RECORD-SUPPLEMENTAL MEDICAL DATA
战术战斗伤亡护理卡TACTICAL COMBAT CASUALTY CARE(TCCC)CARD
审查2001-2013年国防卫生委员会从军事行动中吸取的战斗创伤教训报告 英文 CTLL Report Update v5
2018-2022 年美国武装部队现役成员的热衰竭和中暑情况
- 电子病历 会议材料
-
+
首页
13-Advancing the scientific study of prehospital mass casualty response through a Translational Science process- the T1 scoping literature review stage
<p>European Journal of Trauma and Emergency Surgery (2023) 49:1647–1660 <a href="https://doi.org/10.1007/s00068-023-02266-0">https://doi.org/10.1007/s00068-023-02266-0</a></p><p><img src="/media/202408//1724838785.5262022.png" /><img src="/media/202408//1724838785.557735.png" /></p><p><strong>REVIEW ARTICLE</strong></p><p><strong>Advancing the scientifc study of prehospital mass casualty response through a Translational Science process: the T1 scoping literature</strong></p><p><strong>review stage</strong></p><p><strong>Eric S. Weinstein</strong><a href="http://orcid.org/0000-0002-1147-5656"><strong>1</strong>o</a><strong>· Joseph L. Cuthbertson1 · Teri Lynn Herbert2 · George T. Voicescu1 · Michelangelo Bortolin1</strong></p><p><strong>·</strong></p><p><strong>Sabina Magalini3 · Daniele Gui3 · Mariana Helou4 · Kristina Lennquist Montan5 · Carl Montan5 · Chaim Rafalowsky6</strong></p><p><strong>·</strong></p><p><strong>Giuseppe Ratto7 · Stefano Damele7 · Simone Bazurro7 · Itamar Laist8 · Federica Marzi3 · Alessandro Borrello3</strong></p><p><strong>·</strong></p><p><strong>Pietro Fransvea3 · Andrea Fidanzio3 · Carlos Yanez Benitez8 · Roberto Faccincani8 · Luca Ragazzoni1,9 Marta Caviglia1,10</strong></p><p><strong>·</strong></p><p>Received: 28 November 2022 / Accepted: 26 March 2023 / Published online: 15 April 2023 © The Author(s) 2023</p><p><strong>Abstract</strong></p><p><strong>Purpose </strong>The European Union Horizon 2020 research and innovation funding program awarded the NIGHTINGALE grant</p><p>to develop a toolkit to support frst responders engaged in prehospital (PH) mass casualty incident (MCI) response. To reach the projects’ objectives, the NIGHTINGALE consortium used a Translational Science (TS) process. The present work is the frst TS stage (T1) aimed to extract data relevant for the subsequent modifed Delphi study (T2) statements.</p><p><strong>Methods </strong>The authors were divided into three work groups (WGs) MCI Triage, PH Life Support and Damage Control</p><p>(PHLSDC), and PH Processes (PHP). Each WG conducted simultaneous literature searches following the PRISMA exten- sion for scoping reviews. Relevant data were extracted from the included articles and indexed using pre-identifed PH MCI response themes and subthemes.</p><p><strong>Results </strong>The initial search yielded 925 total references to be considered for title and abstract review (MCI Triage 311,</p><p>PHLSDC 329, PHP 285), then 483 articles for full reference review (MCI Triage 111, PHLSDC 216, PHP 156), and fnally 152 articles for the database extraction process (MCI Triage 27, PHLSDC 37, PHP 88). Most frequent subthemes and novel concepts have been identifed as a basis for the elaboration of draft statements for the T2 modifed Delphi study.</p><p><strong>Conclusion </strong>The three simultaneous scoping reviews allowed the extraction of relevant PH MCI subthemes and novel concepts</p><p>that will enable the NIGHTINGALE consortium to create scientifcally anchored statements in the T2 modifed Delphi study.</p><p><strong>Keywords </strong>Scoping review · Translational science · Mass casualty incident · NIGHTINGALE project · Damage control interventions</p><p><img src="/media/202408//1724838785.611682.png" /></p><p>1</p><p>2</p><p>3</p><p>4</p><p>5</p><p>Eric S. Weinstein</p><p>eric.weinstein@uniupo.it</p><p>CRIMEDIM—Center for Research and Training in Disaster Medicine, Humanitarian Aid, and Global Health, Università del Piemonte Orientale, Novara, Italy</p><p>Research and Education Services, Medical University of South Carolina Library, Charleston, SC, USA</p><p>Department of Surgery, Policlinico Gemelli, Catholic University of the Sacred Heart, Rome, Italy</p><p>School of Medicine, Department of Emergency Medicine, Lebanese American University, Beirut, Lebanon</p><p>MRMID—International Association for Medical Response to Major Incidents and Disasters, and Vascular Surgery,</p><p>6</p><p>7</p><p>8</p><p>9</p><p>10</p><p>Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden</p><p>Magen David Adom, National Emergency Medical, Disaster, Ambulance and Blood Bank Service, Ashkelon, Israel</p><p>Emergency Department, Azienda Sociosanitaria Ligure 2, Liguria, Italy</p><p>ESTES—European Society for Trauma and Emergency</p><p>Surgery, Disaster and Military Surgery Section, Milan, Italy</p><p>Department of Sustainable Development and Ecological</p><p>Transition, Università del Piemonte Orientale, Vercelli, Italy</p><p>Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy</p><p>a 灬</p><p><strong>Introduction</strong></p><p>Sudden onset disasters (SODs) and mass casualty inci- dents (MCIs) from the past have made it evident that col- laborative planning activities between public safety, public health, and clinical healthcare providers are essential for successful responses from the whole spectrum of prehos- pital (PH) response agencies, that must work together to forge and strengthen relationships to produce efcient and effective PH MCI responses [<a href="#bookmark1">1</a>–<a href="#bookmark2">3</a>] . As SODs and MCIs continue to increase, there is a real need to develop PH systems that are truly interoperable and integrated. Already in 2007, in response to the need for stronger con- nections and information exchange between response agencies, the United States Centers for Disease Control and Prevention (CDC) created the Terrorism Injuries: Information, Dissemination, and Exchange (TIIDE) pro- gram [<a href="#bookmark3">4</a>, <a href="#bookmark4">5</a>], ultimately aiming to decrease morbidity and mortality from MCIs, including those related to intentional acts of violence and terrorism. One of the projects awarded in the TIIDE was to work toward a national guideline for MCI response, gathering professionals that spanned over the continuum of care: emergency medical services, emergency medical specialists, and trauma surgeons . To achieve this objective, the TIIDE grant consortium partners used consensus methodology based on the best available science to propose the Sort, Assess, Life-Saving</p><p>interventions, Treatment and/or Transport (SALT) national triage guideline[<a href="#bookmark5">6</a>] and a model uniform core criteria for mass casualty triage (MUCC) [<a href="#bookmark6">7</a>]. (Fig. <a href="#bookmark7">1</a>).</p><p>Despite the literature emerging from the TIIDE project, that spurred further research, discussion, policy, and proce- dure, current emergency medical services and non-medical civil practitioners involved in PH MCI response often have to rely on complicated or even outdated procedures, multiple protocols or lack of homogeneity in response methods and guidelines, and technology of the past. [<a href="#bookmark8">8</a>–<a href="#bookmark9">11</a>]</p><p>To this end, the Directorate-General for European Civil Protection and Humanitarian Aid Operations has been emphasizing the need to promote frst responders’ prepar- edness through targeted actions that include the development and update of contingency plans, standard operating proce- dures, and multi-sector intervention, encouraging involve- ment of those afected by MCIs and disasters in the design and implementation of such preparedness actions. [<a href="#bookmark10">12</a>]</p><p>In 2020, the European Research Executive Agency (REA), in conjunction with the European Union (EU) Horizon 2020 research and innovation funding program, awarded the Novel InteGrated toolkit for enhanced pre- Hospital life support and Triage IN challenGing And Large Emergencies (NIGHTINGALE) grant to a consortium com- prised of a similar wide distribution of PH MCI response agencies and research centers as TIIDE [<a href="#bookmark11">13</a>] (Fig. <a href="#bookmark7">1</a>.). The NIGHTINGALE project features 11 objectives ranging from developing and implementing advanced devices and</p><p><img src="/media/202408//1724838785.746219.jpeg" /></p><p><strong>Fig. 1 </strong>Evolution of the structure and methodology adopted between the TIIDE and NIGHTINGALE project. <em>ACEP </em>American College of Emergency Physicians, <em>ACS-COT </em>American College of Surgeons- Committee on Trauma, <em>AMA </em>American Medical Association, <em>ASL2 </em>Azienda Sociosanitaria Ligure 2 (Italy), <em>EMS </em>Emergency Medical Services, <em>ESTES </em>European Society for Trauma and Emergency Sur- gery, <em>MCI </em>Mass Casualty Incidents, <em>MDA </em>Magen David Adom— Israel National Emergency Pre-Hospital Medical and Blood Services, <em>MININT </em>Ministry of Interior Italy, <em>MRMID </em>Swedish International Association for Promotion of Education and Training in Major Inci-</p><p>dents and Disasters, <em>MUCC </em>Model Uniform Core Criteria for Mass Casualty Triage, <em>NAEMT </em>National Association of Emergency Medi- cal Technicians (US), <em>NAEMSE </em>National Association of Emergency Medical System Educators (US), <em>NAEMSP </em>National Association of Emergency Medical System Physicians (US), <em>NASEMSO </em>National Association of State Emergency Medical System Ofcials (US), <em>SAMU </em>Service d'Aide Médicale Urgente, Paris (France), <em>SALT </em>Sort, Assess, Life-Saving interventions, Treatment and/or Transport, <em>UPO </em>Università del Piemonte Orientale (Italy), <em>USCS </em>Università Cattolica del Sacro Cuore (Italy)</p><p><a id="bookmark7"></a>a 灬</p><p><strong>Table 1 </strong>Scoping review search terms</p><table><tr><td colspan="2"><p><strong>FOUNDATION SPECIFIC SEARCH TERMS for all 3 Groups:</strong></p><p><strong>Who are potential first responders?</strong></p><p>First responder, prehospital care, ambulance, EMT, paramedic, EMS, firefighter, law</p><p>enforcement, police, sheriff, constable, gendarme, military medic, public safety, emergency</p><p>manager, disaster manager, bystander, layperson, laypeople, responsible authorities, group</p><p>leader, EMS physician, Anaesthesiologist, Critical Care Physician, General Surgeon, Nurses,</p><p>ambulance drivers, civil protection, community person, community member, citizen</p><p>OR</p><p><strong>What are possible first response systems?</strong></p><p>Incident management system, incident command system, incident control, crisis control, critical incident management,</p><p>emergency management, disaster management, disaster planning, mass casualty response, disaster response, basic life</p><p>support, advanced life support, stop the bleed, advanced trauma life support, tactical care, tactical EMS, buddy-buddy</p><p>support, first response, triage, prehospital OR “out of hospital” OR field OR “forward deployed medical”</p><p>AND</p><p><strong>What are potential Sudden Onset Disasters?</strong></p><p>Disaster, Avalanche; land, mud, coal ash and slide, Earthquake, Sinkhole, Volcanic eruption, Dust storm, Sandstorm,</p><p>Hydrological disaster, Flood, Tsunami, Tropical cyclone, Hurricane, Blizzard, Hailstorm, Ice storm, Super storm, Cold</p><p>wave, Heat wave, Drought, Thunderstorm, Tornado, Firestorm, Wildfire, Space disasters, road accident, multi-vehicle</p><p>pile-up, derailment; airplane, aircraft, helicopter, plane crash; bridge, building, levee OR dam AND breach OR</p><p>collapse; terrorism, explosion, bomb, artillery, shell and impact; mass shooting</p><p>AND</p><p><strong>What is the incident called?</strong></p><p>Sudden onset disaster, mass casualty incident, mass casualty event AND</p><p><strong>WORK GROUP SPECIFIC SEARCH TERMS:</strong></p></td></tr><tr><td><p><strong>PHLSDC</strong></p></td><td><p>Lifesaving intervention, life support, damage control, damage control strategy,</p><p>pre-hospital damage control, pre-hospital blood transfusion, needle decompression, sucking chest wound dressing, cricothyrotomy, airway control,</p><p>intubation, airway management, laryngeal mask airway, nasal pharyngeal airway, chin-lift jaw thrust, open airway, hypotension, IV fluid, stop the bleeding, tourniquet, direct pressure, gauze packing, quick clot,haemostatic agent, thermal blanket, pelvic binders, splinting, spinal motion restriction, spinal immobilization, cervical collar, backboard, KED extraction device, scoop</p><p>stretcher, cardiac monitor, electrocardiogram, telemetry, thermal blanket, pulse oximetry, thermography</p></td></tr><tr><td><p><strong>MCI Triage</strong></p></td><td><p>START,mSTART, Jump START, SALT, Sieve, Homebush triage, Standard, CareFlight, STM, Military, CESIRA Protocol, MASS, CBRNE triage, Burn Triage, META Triage, Mass Gathering Triage, SwiFT Triage, TEWS Triage,ASAV, SMART, Major trauma, minor trauma, airway,</p><p>breathing, circulation, bleeding, mental status, walking, waving, Sort, assess, priority triage, primary triage, secondary triage</p><p>AND</p><p>Advanced medical post, casualty collection point, definitive care, emergency department, hospital, health care facility, alternate care site</p><p>AND</p><p>EMS, EMT, paramedic, transportation, ambulance, quick response vehicle, helicopter, fixed wing AND</p><p>Ethics,Drones, Mobile applications, artificial intelligence</p></td></tr><tr><td><p><strong>PHP</strong></p></td><td><p>Incident command and control, crisis command, incident management system, patient identification</p><p>systems, emergency medical tags, wearable electronic devices, Tracking of Emergency Patients, Tracking of Emergency Clients, surge, ration of resources OR scarce OR scarcity OR allocat*, communication from the scene to dispatch, transportation in transportation out, setting up field medical post, setting up casualty collection point, determining hospital capability, volunteer</p><p>management, mass fatality management, forensic examination, surge capacity, medical rescue capacity, medical transport capacity, hospital treatment capacity, severity factor, family</p><p>reunification, people finder, child, adolescent, neonate, youth, paediatric, elderly, special needs, vulnerable populations, uninjured survivors</p></td></tr></table><p><a id="bookmark12"></a>artifcial intelligence, incorporating bystanders into the PH MCI response and addressing ethical challenges, enhancing the collaborative approach across diferent agencies (Sup- plementary Table 1). Having acknowledged the evidence produced by the TIIDE project [<a href="#bookmark13">14</a>], the NIGHTINGALE</p><p>project seeks to strengthen the existing research in the feld of PH MCI and to advance the depth and breadth of PH MCI response guidelines, as advocated by the REA. Therefore, the focus is to upgrade the evaluation of the injured, optimiz- ing life support and damage control procedures and allow a</p><p>a 灬</p><p>shared response across diferent MCI responding agencies, including emergency medical services, non-medical civil protection personnel, volunteers, and citizens. To guide the creation of such evidence-based guidelines, the NIGHTIN- GALE consortium adopted the Translational Science (TS) consensus process that features progressive stages aiming to translate research-informed data into new knowledge in the form of recommendations and guidelines [<a href="#bookmark14">15</a>] (Fig. <a href="#bookmark7">1</a>). As described by Caviglia et al., [<a href="#bookmark15">16</a>] starting from the TS ques- tion (T0), “how to develop, integrate, test, deploy, demon- strate and validate a Novel Integrated Toolkit for Emergency Medical Response which ensures an upgrade to PH MCI response?”, the application of TS in the NIGHTINGALE project entails the identifcation of current approaches and published data (T1, scoping literature review stage), the use of a consensus methodology as a basis for the development of evidence-based tools and guidelines (T2, modifed Del- phi), the translation into practice (T3, development of tools and guidelines), and a fnal evaluation stage (T4, evaluation and outcome assessment) (Fig. <a href="#bookmark7">1</a>). In the T1 stage, three simultaneous scoping literature reviews were designed to identify sources and references on MCI Triage, PH Life Support and Damage Control (PHLSDC) interventions, and PH processes (PHP) that could then be interrogated using a defned data extraction tool to determine concepts, theories, and knowledge gaps. [<a href="#bookmark14">15</a>, <a href="#bookmark15">16</a>] Hence, the aim of this work was to map, extract, and synthetize current evidence-based knowledge, gap, and challenges on MCI Triage, PHLSDC, and PHP through three diferent simultaneous scoping lit- erature reviews, to inform the creation of an initial set of statements for the T2 modifed Delphi study.</p><p><strong>Methods</strong></p><p>This study describes the structured T1 scoping literature reviews guided by the Preferred Reporting Items for System- atic Reviews and Meta-Analyses extension for scoping reviews (PRISMA-ScR) <a href="#bookmark16">[17</a>, <a href="#bookmark17">18</a>]. To specifcally address each compo- <a id="bookmark18"></a>nent of the PH MCI response, the authors were divided into the</p><p><strong>Table 2 </strong>PRISMA statement</p><table><tr><td></td><td><p>MCI Triage</p></td><td><p>PHLSDC</p></td><td><p>PHP</p></td></tr><tr><td><p>References retrieved via search</p></td><td><p>304</p></td><td><p>332</p></td><td><p>304</p></td></tr><tr><td><p>Additional via other means</p></td><td><p>11</p></td><td><p>2</p></td><td><p>61</p></td></tr><tr><td><p>Duplicates discarded</p></td><td><p>4</p></td><td><p>5</p></td><td><p>80</p></td></tr><tr><td><p>References screened</p></td><td><p>311</p></td><td><p>329</p></td><td><p>285</p></td></tr><tr><td><p>References discarded</p></td><td><p>200</p></td><td><p>113</p></td><td><p>129</p></td></tr><tr><td><p>References assessed</p></td><td><p>111</p></td><td><p>216</p></td><td><p>156</p></td></tr><tr><td><p>References discarded</p></td><td><p>84</p></td><td><p>179</p></td><td><p>68</p></td></tr><tr><td><p>References data extracted</p></td><td><p>27</p></td><td><p>37</p></td><td><p>88</p></td></tr></table><p>three work groups (WGs) of MCI Triage, PHLSDC, and PHP. Each WG included health professionals and researchers with specifc expertise in MCI response and patient management. Under the direction of a medical informaticist, the search strat- egy included only terms relating to or describing sudden onset disaster PH MCI response. The WGs conducted simultane- ous searches from November 2021 to January 2022 following the same search term methodology until the search became more specifc relating to each WG (MCI Triage, PHLSDC, and PHP), as shown in Table <a href="#bookmark12">1</a>.</p><p><strong>Eligibility criteria</strong></p><p>The search included English-language papers published from January 1983 to October 2021 on PubMed, SCOPUS, CINAHL (Cumulative Index to Nursing and Allied Health Literature, EBSCO, Elton B. Stephens Company, Ipswich, Massachusetts USA), DTIC (Defense Technical Information Center, U.S. Department of Defense), CRI (Emergency Care Research Institute, Plymouth Meeting, Pennsylvania, USA), and PsycInfo (American Psychological Association, Washing- ton D.C., USA). The search terms were adapted for use with other bibliographic databases in combination with database- specifcflters for controlled trials, where these were available. An ancestry search was also performed to identify additional references from the bibliography of references retrieved in the searches. The reference manager was EndNote™ X9 and 20 (Clarivate; Philadelphia, Pennsylvania, USA). References that did not meet the inclusion criteria, specifcally did not study or report an MCI or MCI exercise, were excluded.</p><p><strong>Search strategy</strong></p><p>After each WG conducted its initial search, duplicates were removed. Reviewers in each WG independently screened refer- ence titles and abstracts to determine if inclusion criteria were met. Any disagreement was resolved by discussion within the WG. Each WG removed any reference that did not meet inclusion criteria from further consideration. Subsequently, full texts of included articles were screened, disagreement was resolved by discussion, and references that did not meet inclusion criteria were removed. The remaining included articles for each WG underwent data extraction into an Excel database (Microsoft Corp.; Redmond, Washington, USA) that was developed using themes and subthemes from PH MCI response literature and in compliance with the NIGHTIN- GALE objectives. This raw data, together with other informa-</p><p>tion gleaned from the full reference review process (such as relevant tables,fgures, or writings) constituted the base for the development of the initial set of statements in the T2 modifed Delphi stage. Specifcally, the data extraction process focused on extracting data that could lead to the creation of relevant statements for the T2 stage by identifying recurrent subjects</p><p>a 灬</p><p><strong>Table 3 </strong>Data retrieved from the three groups of MCI Triage, PHLSDC, and PHP, stratifed according to identifed themes and subthemes</p><table><tr><td><p>MCI Triage themes, subthemes, (number)</p></td><td><p>PHLSDC themes, subthemes, (number)</p></td><td><p>PHP Themes, Subthemes, (Number)</p></td></tr><tr><td><p>Education</p><p>Just in time (0)</p><p>Initial curriculum (3)</p><p>Maintenance curriculum (1)</p><p>Simulation training Tabletop (1)</p><p>Live full scale (5) Screen-based (0)</p><p>Virtual reality (1) Artifcial reality (0) Audiovisual (0)</p><p>Competency Initial (8)</p><p>Maintenance (1)</p><p>Regulatory requirement (2)</p><p>Indications: history (collected over time from scene to defnitive care)</p><p>Mechanism of injury (21) Time since injury (1)</p><p>By-stander information/intervention/reaction (8)</p><p>Warm ischemia time (entrapped) (0)</p><p>Exposure to environment time (warm/cold/ wind/water/chemical/smoke) (3)</p><p>Co-morbid conditions (1)</p><p>Medications (1) Allergies (0)</p><p>Indications: physical Initial cursory (14) Primary (22)</p><p>Secondary (13)</p><p>Equipment: standard BP cuf (16)</p><p>Stethoscope (12)</p><p>Equipment: resource scarcity (11) IV (start kits, tubing IVF) (5)</p><p>Meds (2)</p><p>Bandages (1) Splinting (0)</p><p>Spinal motion restrictions (0) Other (3)</p><p>Basic monitors used for MCI Triage Cardiac (12)</p><p>Pulse oximetry (10)</p><p>Advanced monitors for MCI Triage Ultrasound (1)</p><p>Physiology monitor (cardiac output, blood vol) (1)</p><p>Smart watch/bracelet) (2)</p></td><td><p>Education</p><p>Just in time (1)</p><p>Initial curriculum (18)</p><p>Maintenance curriculum (5)</p><p>Simulation training Tabletop (5)</p><p>Live full scale (3) Screen-based (0)</p><p>Virtual reality (0) Artifcial reality (1) Audiovisual (0)</p><p>Competency Initial (17)</p><p>Maintenance (10)</p><p>Regulatory requirement (3)</p><p>Indications: history (collected over time from scene to defnitive care)</p><p>Mechanism of injury (13) Time since injury (3)</p><p>By-stander information/intervention/reaction (3)</p><p>Warm ischemia time (entrapped) (1)</p><p>Exposure to environment time (warm/cold/ wind/water/chemical/smoke) (12)</p><p>Co-morbid conditions (0)</p><p>Medications (3) Allergies (0)</p><p>Indications: physical Initial cursory (11)</p><p>Primary (26) Secondary (2)</p><p>Equipment to perform PHLSDC Stopping the bleeding (11)</p><p>Splinting (1)</p><p>Placing spinal motion restriction (2) Needle decompression (2)</p><p>Administering antidotes (6) Decontaminating (3)</p><p>Starting IV's, IVF's (14); blood products (4)</p><p>Basic monitors used to perform PHLSDC Cardiac (9)</p><p>Pulse oximetry (6)</p><p>Advanced monitors used to perform PHLSDC Ultrasound (2)</p><p>Physiology monitor (cardiac output, blood vol) (7)</p><p>Smart watch/bracelet (0)</p></td><td><p>Education</p><p>Just in Time (9)</p><p>Initial Curriculum (3)</p><p>Maintenance Curriculum (25) Terminology of MCI processes Mass Casualty Incident (25)</p><p>Incident management system (3) Disaster response (23)</p><p>Incident command system (4) Mass casualty response (21) Agreed terminology (4)</p><p>Critical incident management (1) Incident control (1)</p><p>Competency Initial (3)</p><p>Maintenance (22)</p><p>Regulatory requirement (5) Policy/Planning framework Government (18)</p><p>Humanitarian/Non-government (3) Organizational (24)</p><p>Vulnerable populations (3)</p><p>Activation/incident notifcation (43) Government request (7)</p><p>By-stander information/intervention/reac- tion (3)</p><p>Organizational activation (23)</p><p>Surge plans (9) Staf recall (1)</p><p>Command system/authority Government (8)</p><p>Non-government (2) Organizational (18)</p><p>Resource augmentation/ allocation Human resources (15)</p><p>Equipment (8)</p><p>Air transport (9) Road transport (4)</p><p>Mass fatality management (3) Family reunifcation (1)</p><p>Field medical post (3)</p><p>Telemedicine (3) Logistics (10)</p><p>Safety</p><p>Deployment (5)</p><p>Decontamination (10) PPE (1)</p><p>Hazard assessment (15) Casualty Distribution</p><p>Live time (1)</p><p>Coordinated/planned (19) Patient tracking (1)</p><p>Distribution model (19)</p></td></tr></table><p><a id="bookmark19"></a>a 灬</p><p><strong>Table 3 </strong>(continued)</p><table><tr><td><p>MCI Triage themes, subthemes, (number)</p></td><td><p>PHLSDC themes, subthemes, (number)</p></td><td><p>PHP Themes, Subthemes, (Number)</p></td></tr><tr><td><p>Record (patient chart)—electronic record (3)</p></td><td><p>Record (patient chart)</p></td><td><p>Reporting/Documentation</p></td></tr><tr><td><p>Paper: triage tag, patients' pocket (4)</p></td><td><p>Paper: triage tag, patients' pocket (5)</p></td><td><p>Electronic (6)</p></td></tr><tr><td><p>Radio (0)</p></td><td><p>Radio (4)</p></td><td><p>Paper (2)</p></td></tr><tr><td><p>Verbal (0)</p></td><td></td><td><p>Radio (2)</p></td></tr><tr><td><p>Reassessment</p></td><td><p>Reassessment</p></td><td><p>Communication/ Situational awareness</p></td></tr><tr><td><p>Warm ischemia (0)</p></td><td><p>Warm ischemia (4)</p></td><td><p>Social media (5)</p></td></tr><tr><td><p>Compartment syndrome (0)</p></td><td><p>Compartment syndrome (4)</p></td><td><p>Radio (10)</p></td></tr><tr><td><p>Time on backboard (0)</p></td><td><p>Time on backboard (2)</p></td><td><p>Telemetry (2)</p></td></tr><tr><td><p>Response to IV’s (3)</p></td><td><p>Response to IV’s (3)</p></td><td><p>Remote access/ live feed/drone (4)</p></td></tr><tr><td><p>Response to pain meds (0)</p></td><td><p>Response to pain meds (0)</p></td><td></td></tr><tr><td><p>Response to antiemetics (0)</p></td><td><p>Response to antiemetics (0)</p></td><td></td></tr><tr><td><p>New complaints (0)</p></td><td><p>New complaints (2)</p></td><td></td></tr><tr><td><p>Continuous vital signs monitoring (14)</p></td><td><p>Continuous vital signs monitoring (8)</p></td><td></td></tr><tr><td><p>Outcomes of decisions</p></td><td><p>Outcomes of decisions</p></td><td><p>First Responders</p></td></tr><tr><td><p>Treatment prioritization (15)</p></td><td><p>Treatment of prioritization (13)</p></td><td><p>All (Volunteer notifcation, Volunteer activa-</p></td></tr><tr><td><p>Evacuation prioritization (19)</p></td><td><p>Airway (8) Bleeding (6)</p><p>Compartment syndrome (4)</p><p>Pressure injuries due to prolonged spinal motion restriction (SMR) (0)</p><p>Emesis with aspiration due to SMR (0)</p><p>Malignant dysthymia due to hyperkalemia due to crush syndrome (2)</p><p>Second spinal injury due to lack of SMR or not place SMR (1)</p><p>Amputation (1)</p><p>Pul edema due to over fuid resuscitate (1) Other (42)</p></td><td><p>tion/management, frst responder plans) (15)</p><p>Volunteer activation/management (3) First Responder plans (3)</p></td></tr><tr><td><p>Patient tracking Triage tags (3)</p></td><td></td><td></td></tr><tr><td><p>RFID bracelets (1) Arm bands (1)</p></td><td></td><td></td></tr><tr><td><p>Smart watch/bracelets (1) Other (2)</p></td><td></td><td></td></tr><tr><td><p>Reporting (within the IMS transfer of care)</p></td><td><p>Report (within the IMS transfer of care) Elec-</p></td><td><p>Recovery/staf care</p></td></tr><tr><td><p>Electronic (1)</p></td><td><p>tronic (0)</p></td><td><p>Debrief (2)</p></td></tr><tr><td><p>Paper: triage tag, patients' pocket (0)</p></td><td><p>Paper: triage tag, patients' pocket (3)</p></td><td><p>Staf Welfare (1)</p></td></tr><tr><td><p>Radio (2)</p></td><td><p>Radio (4)</p></td><td></td></tr><tr><td><p>Phone (2)</p></td><td><p>Phone (1)</p></td><td></td></tr></table><p>The (N) identifes the number of times a reference discusses the subtheme (some references discuss more than one subtheme). <em>BP </em>blood pres- sure, <em>IMS </em>integrated management system, <em>IV </em>intravenous, <em>IVF </em>intravenous fuid, <em>MCI </em>mass casualty incident, <em>PPE </em>personal protective equip- ment, <em>RFID </em>radio frequency identifcation, <em>SMR </em>spine motor restriction</p><p>and innovative concepts that have the potential to improve cur- rent practices in PH MCI management but for which validation in clinical settings is still underway.</p><p><strong>Results</strong></p><p>The initial search for all 3 WGs yielded 925 references. Fol- lowing title and abstract review, 483 articles were considered for full text review. Finally, 152 articles were included in the database extraction process: MCI Triage <a href="#bookmark20">[19–</a><a href="#bookmark21">45</a>], PHLSDC [<a href="#bookmark21">45</a>–<a href="#bookmark22">81</a>], PHP [<a href="#bookmark23">30</a>, <a href="#bookmark24">43</a>, <a href="#bookmark25">82</a>–<a href="#bookmark26">167</a>]. (Table <a href="#bookmark18">2</a>).</p><p>Diferent thematic categories and related subthemes were created by each WG (Table <a href="#bookmark19">3</a>). The data extraction process drew attention to subthemes frequently mentioned in the included references. Specifcally, recurrent subthemes in the MCI Triage WG were the recording of mechanism of injury (<em>n </em>= 21), the involvement of bystanders (<em>n </em>= 8), the use of basic monitoring in support of PH triage procedures (including cardiac monitoring and pulse oximetry, respec- tively, mentioned <em>n </em>= 12 and <em>n </em>= 10 times), re-assessment of MCI casualties though continuous vital signs monitor- ing (<em>n </em>= 14), treatment prioritization (<em>n </em>= 15), and evacua- tion prioritization (<em>n </em>= 19) as the main outcomes of the MCI Triage process. Additionally, references included in the MCI</p><p>a 灬</p><p>Triage data extraction drew attention to the concepts of shock index, pulse pressure, and heart rate variability to be used in the PH assessment of casualties [<a href="#bookmark27">23</a>, <a href="#bookmark28">35</a>].</p><p>Among the 37 references included in the PHLSDC data extraction, the subthemes more frequently identifed were the collection of the mechanism of injury (<em>n </em>= 13) and exposure to environment time (<em>n </em>= 12), the importance of stopping the bleeding maneuvers (<em>n </em>= 11) and PH fuid resuscitation (<em>n </em>= 14), basic and advanced monitoring to guide PHLSDC interventions, including cardiac monitoring (<em>n </em>= 9), pulse oximetry (<em>n </em>= 6), and physiological monitoring (<em>n </em>=7), re- assessment of MCI casualties through continuous vital signs monitoring (<em>n </em>= 8) and treatment of casualties according to triage prioritization (<em>n </em>= 13). Furthermore, the authors iden- tifed the following “hot” issues worthy of further attention: PH management of crush syndrome [<a href="#bookmark29">75</a>], resuscitation of avalanche victims [<a href="#bookmark30">53</a>, <a href="#bookmark31">54</a>], and shared CBRNE treatment protocols [<a href="#bookmark32">60</a>, <a href="#bookmark22">81</a>].</p><p>Lastly, the subthemes commonly identifed in the PHP data extraction included aspects pertaining to MCI PHP terminology, policy and planning framework, and incident activation/notifcation. Aspects related to decontamination (<em>n </em>= 10) and hazard assessment (<em>n </em>= 15) were also frequently mentioned. Furthermore, subthemes related to casualty dis- tribution (either through coordinated/planned methodologies <em>n </em>= 19 or an ad hoc distribution model <em>n </em>= 19), communica- tion and situational awareness (including the use of social media, radio communication and drones), resource alloca- tion and the integration of technology to support PHP were identifed.</p><p><strong>Discussion</strong></p><p>The three simultaneous PRISMA scoping reviews were per- formed in the T1 stage of a TS process, ultimately seeking to advance MCI PH response guidelines in the framework of the EU-funded NIGHTINGALE project. This initial step of mapping current available evidence through the analysis of recurrent subthemes, common practices, and new concepts identifed in MCI Triage, PHLSDC, and PHP literature will serve as the basis for the development of three initial sets of statements during the T2 modifed Delphi stage. Indeed, results of the three scoping reviews emphasized several aspects that have been recurrently investigated in the MCI literature and for which expert consensus was deemed as needed by the authors.</p><p>Despite MCI Triage being the mainstay of initial cas- ualty management, no global consensus or gold standard defnition exists across diferent countries, and most PH practitioners have received training in the initial MCI Tri- age system favored by their specifc agency and jurisdic- tion [<a href="#bookmark5">6</a>]. Since numerous attempts have been made toward</p><p>developing shared guidelines for MCI Triage <a href="#bookmark4">[5</a>] or in the attempt to create a universal triage tool [<a href="#bookmark33">168</a>], the NIGHTIN- GALE project recognizes the necessity to study these eforts as a progression of the previous above mentioned projects. Results of the MCI Triage scoping review determined that recording the mechanism of injury from the initial assess- ment and as more details emerge over the continuum of care is important for the defnitive treatment team [<a href="#bookmark20">19</a>, <a href="#bookmark34">21</a>, <a href="#bookmark27">23</a>–<a href="#bookmark35">26</a>, <a href="#bookmark36">29</a>–<a href="#bookmark37">37</a>, <a href="#bookmark38">39</a>, <a href="#bookmark39">41</a>–<a href="#bookmark21">45</a>]. This includes obtaining information not only from EMS staf but also non-medical bystanders who rendered frst aid or assisted EMS [<a href="#bookmark40">28</a>–<a href="#bookmark28">35</a>], reinforcing the concept that gathering relevant observations from bystand- ers could support the MCI response eforts, in compliance with the NIGHTINGALE objectives. Information support- ing the continuum of care involving the initial and subse- quent assessments of vital signs should determine treatment and evacuation prioritization, considering the use of cardiac monitors and pulse oximetry when available. While litera- ture suggests the use of advanced physiologic monitoring and the incorporation of point-of-care ultrasound in the con- tinuum of care [<a href="#bookmark34">21</a>, <a href="#bookmark41">31</a>], it is also evident that initial assess- ment of MCI casualties should remain quick, practical, easy to remember by all frst responders and applicable across diferent environments including austere settings, thus, to be performed without diagnostic equipment. Appropriate tag- ging and tracing of MCI casualties remains a pillar of any MCI Triage system adopted, opening the door for innovative solutions and tools possibly fulflling the triple function of tagging, tracing, and continuous monitoring [<a href="#bookmark42">27</a>, <a href="#bookmark43">42</a>, <a href="#bookmark44">44</a>].</p><p>References from the PHLSDC scoping review high- lighted the need to focus on assessment and treatment guidelines for crush injuries during MCIs [<a href="#bookmark45">46</a>, <a href="#bookmark46">63</a>, <a href="#bookmark29">75</a>], as well as for the development of awareness on chemical, biological, radiological, nuclear, and explosive (CRBNE) events, advocating for education, training, and competen- cies to be developed across all agencies [<a href="#bookmark47">48</a>, <a href="#bookmark48">57</a>, <a href="#bookmark49">71</a>, <a href="#bookmark50">76</a>, <a href="#bookmark51">79</a>, <a href="#bookmark22">81</a>] . Similarly, control of major hemorrhages as an integral part of the triage process emerged as a recurrent topic in the included PHLSDC references, with a special emphasis on the role of non-medical bystanders, as specif- cally stressed by the Hartford Consensus after the Sandy Hook Elementary School mass shooting and by Lesafre and colleagues after the 2015 Paris attacks [<a href="#bookmark45">46</a>–<a href="#bookmark47">48</a>, <a href="#bookmark52">50</a>, <a href="#bookmark53">51</a>, <a href="#bookmark54">61</a>–<a href="#bookmark46">63</a>, <a href="#bookmark55">73</a>, <a href="#bookmark56">77</a>, <a href="#bookmark57">80</a>, <a href="#bookmark58">169</a>]. Overall, attention was given to the importance of continuous real-time monitoring and re-assessment of casualties to guide prioritization of life- saving interventions and transportation, suggesting the possibility to introduce deployable technology, provided it to be quick, reliable, and easy to use [<a href="#bookmark47">48</a>, <a href="#bookmark52">50</a>, <a href="#bookmark31">54</a>–<a href="#bookmark59">56</a>, <a href="#bookmark46">63</a>, <a href="#bookmark60">69</a>, <a href="#bookmark29">75</a>, <a href="#bookmark50">76</a>].</p><p>Results of the PHP scoping review stressed the impor- tance of a common terminology to be adopted across all agencies working in the same jurisdiction, along with the</p><p>a 灬</p><p>urgent need to include practices that support gender diver- sity and are contextual to vulnerable groups and special needs populations [<a href="#bookmark23">30</a>, <a href="#bookmark61">111</a>, <a href="#bookmark62">140</a>, <a href="#bookmark63">147</a>, <a href="#bookmark64">159</a>, <a href="#bookmark65">160</a>]. Included references addressed the role of technology in support- ing the diferent PH MCI processes, from inter-agencies communication systems, to telemedicine and information management systems to coordinate the diferent resources deployed (including human resources, equipment, and vehicles) and to distribute MCI casualties in diferent health facilities [<a href="#bookmark66">90</a>, <a href="#bookmark67">92</a>, <a href="#bookmark68">99</a>, <a href="#bookmark69">146</a>, <a href="#bookmark65">160</a>] . Data supported that standard trauma transportation decisions and over- all MCI coordination may have to be adapted in context to the hazard impact and health system capacity, taking into account the possibility of CBRNE threats demanding from patient decontamination and personnel self-care [<a href="#bookmark70">86</a>, <a href="#bookmark71">88</a>, <a href="#bookmark72">89</a>, <a href="#bookmark73">100</a>, <a href="#bookmark74">102</a>, <a href="#bookmark75">103</a>, <a href="#bookmark76">108</a>, <a href="#bookmark77">136</a>]. Additionally, from the results emerged that frequently defnitive care may require alternative care sites to include feld hospitals, adapted structures such as conventions centers, schools, or reli- gious buildings like churches and mosques that have the capacity and capability to attend the injured [<a href="#bookmark78">105</a>, <a href="#bookmark79">131</a>, <a href="#bookmark80">151</a>] . The concept of enhancing situational awareness through available technology (such as drones) to better guide critical decision-making during MCIs emerged in</p><p>some of the included references, especially in remote areas</p><p>with access constraints [<a href="#bookmark66">90</a>, <a href="#bookmark67">92</a>, <a href="#bookmark68">99</a>, <a href="#bookmark81">109</a>, <a href="#bookmark82">117</a>, <a href="#bookmark83">129</a>, <a href="#bookmark84">133</a>, <a href="#bookmark85">139</a>, <a href="#bookmark69">146</a>, <a href="#bookmark65">160</a>] . Moreover, the role of spontaneous vol- unteers and bystanders both in assisting relief eforts [<a href="#bookmark71">88</a>, <a href="#bookmark86">107</a>, <a href="#bookmark84">133</a>, <a href="#bookmark87">134</a>, <a href="#bookmark88">141</a>, <a href="#bookmark89">144</a>, <a href="#bookmark90">166</a>] and in providing information through social media that could be used for rapid situa- tion assessment [<a href="#bookmark83">129</a>] consistently emerges in the included references. Lastly, a recurrent notion highlighted in the included references was the need for a structured MCI plan able to regulate the use of technical advances, to fos- ter education and training competences across diferent agencies, to allow for structured debriefng in a collabora- tive manner, and to promote the use of key performance indicators to evaluate and improve the response [<a href="#bookmark91">83</a>–<a href="#bookmark70">86</a>, <a href="#bookmark92">91</a>, <a href="#bookmark93">98</a>, <a href="#bookmark73">100</a>–<a href="#bookmark94">104</a>, <a href="#bookmark86">107</a>, <a href="#bookmark81">109</a>–<a href="#bookmark95">112</a>, <a href="#bookmark96">116</a>, <a href="#bookmark97">119</a>, <a href="#bookmark98">120</a>, <a href="#bookmark99">122</a>, <a href="#bookmark100">124</a>,</p><p><a href="#bookmark79">131</a>, <a href="#bookmark101">135</a>, <a href="#bookmark102">137</a>, <a href="#bookmark103">142</a>, <a href="#bookmark104">145</a>, <a href="#bookmark105">148</a>, <a href="#bookmark106">153</a>, <a href="#bookmark107">158</a>, <a href="#bookmark65">160</a>, <a href="#bookmark108">164</a>, <a href="#bookmark90">166</a>].</p><p><strong>Limitations</strong></p><p>A scoping review intends to capture all included peer- reviewed publications as well as the ancestry publications</p><p>that were cited in these publications. The Grey literature presents challenges to obtain relevant references and all attempts were made to include these references, but some may not have been obtained. There is no way to know if these potential missing references would have made a dif- ference in the available information to extract data. The raw data extracted by WG members and the work group lead are intended to undergo further analysis within each work group</p><p>to create the initial T2 modifed Delphi statements. This data extraction process, though intended to be encompassing and comprehensive, may not have captured relevant data due to the thematic approach of the database. There is no way to know if relevant data were not extracted but the secondary data retained by each work group member as they read each full reference article provide additional information for the statement creation process.</p><p><strong>Conclusion</strong></p><p>The progression of the science to critically examine the PH MCI response peer-reviewed medical literature and other sources has enabled the NIGHTINGALE partners to methodically obtain raw data and secure relevant tables, fg- ures, or writings that will contribute to each WG’s creation of the initial T2 modifed Delphi study statements. Once submitted to experts, statements that achieve consensus will be used to defne guidelines and recommendation, in com- pliance with the objectives of the NIGHTINGALE project.</p><p><strong>Electronic supplementary material </strong>The online version of this article <a href="https://doi.org/10.1007/s00068-023-02266-0">(https://doi.org/10.1007/s00068-023-02266-0</a>) contains supplementary material, which is available to authorized users.</p><p><strong>Acknowledgements </strong>The authors thank the Partners of the NIGHT- INGALE Consortium and the User Advisory Board Members who provided their valuable inputs during the diferent steps of the TS methodology.</p><p><strong>Funding </strong>This paper is supported by the NIGHTINGALE project ‘Novel InteGrated toolkit for enhanced pre-Hospital life support and Triage IN challenging And Large Emergencies’. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101021957.</p><p><strong>Data availability </strong>The authors confrm that the data supporting the fnd- ings of this study are available within the article and its supplementary materials.</p><p><strong>Declarations</strong></p><p><strong>Conflict of interest </strong>The authors declare that they have no known com- peting fnancial interests or personal relationships that could have ap- peared to infuence the work reported in this paper.</p><p><strong>Open Access </strong>This article is licensed under a Creative Commons Attri- bution 4.0 International License, which permits use, sharing, adapta- tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <a href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</a>.</p><p>a 灬</p><p><a id="bookmark15"></a><a id="bookmark1"></a><strong>References</strong></p><p>1. Heide E. Disaster response: principles of preparation & coordina- <a id="bookmark16"></a>tion. Publ Prod Manag Rev. 1989;1:15. <a href="https://doi.org/10.2307/3380618">https://doi.org/10.2307/</a> <a href="https://doi.org/10.2307/3380618">3380618</a>.</p><p>2. Kapucu N. Interorganizational coordination in complex environ- ments of disasters: the evolution of intergovernmental disaster response systems. J Homeland Secur Emergency Manag [Inter- net]. 2009 Jul 10 [cited 2022 Nov 16];6(1). <a href="https://doi.org/10.2202/1547-7355.1498">https://doi.org/10.</a> <a id="bookmark2"></a><a href="https://doi.org/10.2202/1547-7355.1498">2202/1547-7355.1498</a></p><p>3. Mills AF, Helm JE, Jola-Sanchez AF, Tatikonda MV, Courtney BA. Coordination of autonomous healthcare entities: emergency response to multiple casualty incidents. Prod Oper Manag. <a id="bookmark3"></a>2018;27(1):184–205. <a href="https://doi.org/10.1111/poms.12790">https://doi.org/10.1111/poms.12790</a>.</p><p>4. Injury Center Funding Opportunity Announcements (FOAs). United States Centers for Disease Control and Prevention’s National Center for Injury Prevention and Control, Division of Injury Response, created the Terrorism Injuries: Information, Dissemination and Exchange (TIIDE) project. [Internet]. 2018 [cited 2022 Nov 11].</p><p>5. Hunt R. TIIDE Project 2009 Annual Report Terrorism Inju- ries: Information, Dissemination and Exchange. Supplemental Material.</p><p>6. Lerner EB, Schwartz RB, Coule PL, Weinstein ES, Cone DC, Hunt RC, et al. Mass casualty triage: an evaluation of the data and development of a proposed national guideline. Disaster Med Public Health Prep. 2008;2(Suppl 1):S25-34. <a href="https://doi.org/10.1097/DMP.0b013e318182194e">https://doi.org/10.</a> <a id="bookmark6"></a><a href="https://doi.org/10.1097/DMP.0b013e318182194e">1097/DMP.0b013e318182194e</a>.</p><p>7. Lerner EB, Cone DC, Weinstein ES, Schwartz RB, Coule PL, Cronin M, et al. Mass casualty triage: an evaluation of the sci- ence and refnement of a national guideline. Disaster Med Pub- lic Health Prep. 2011;5(2):129–37. <a href="https://doi.org/10.1001/dmp.2011.39">https://doi.org/10.1001/dmp.</a> <a id="bookmark8"></a><a href="https://doi.org/10.1001/dmp.2011.39">2011.39</a>.</p><p>8. Federal Interagency Committee on EMS. National Implemen- tation of the Model Uniform Core Criteria for Mass Casualty Incident Triage [Internet]. 2014 Mar [cited 2022 Nov 15].</p><p>9. American Academy of Pediatrics, American College of Emer- gency Physicians, American College of Surgeons—Committee on Trauma, American Trauma Society, Children’s National Med- ical Center, Child Health Advocacy Institute, Emergency Medi- cal Services for Children National Resource Center, International Association of Emergency Medical Services Chiefs, et al. Model</p><p>uniform core criteria for mass casualty triage. Disaster Med Pub- <a id="bookmark35"></a>lic Health Prep. 2011 Jun;5(2):125–8. <a href="https://doi.org/10.1001/dmp.2011.41">https://doi.org/10.1001/</a> <a href="https://doi.org/10.1001/dmp.2011.41">dmp.2011.41</a></p><p>10. National Highway Trafc Safety Administration. Model Uniform Core Criteria for Mass Casualty Incident Triage: Addendum to the Paramedic Instructional Guidelines [Internet]. 2017 Dec [cited 2022 Nov 5].</p><p>11. Holgersson A. Review of On-Scene Management of Mass-</p><p>Casualty Attacks. Journal of Human Security. 2016 Aug 29;12.</p><p><a id="bookmark9"></a><a id="bookmark10"></a><a id="bookmark11"></a><a id="bookmark40"></a><a href="https://doi.org/10.12924/johs2016.12010091">https://doi.org/10.12924/johs2016.12010091</a></p><p>12. European Commission. DG ECHO Guidance Note - Disaster Preparedness. 01012021. :84.</p><p>13. Novel InteGrated toolkit for enhanced pre-Hospital life support and Triage IN challenGing And Large Emergencies [Internet]. [cited 2022 Nov 14].</p><p>14. EMSFocus. Teaching Mass Casualty Triage: Implementing the New MUCC Instructional Guidelines. [Internet]. [cited 2022 Sep 24].</p><p>15. Weinstein ES, Cuthbertson JL, Ragazzoni L, Verde M. A T2 translational science modifed delphi study: spinal motion restric- tion in a resource-scarce environment. Prehosp Disaster Med. 2020;35(5):538–45. <a href="https://doi.org/10.1017/S1049023X20000862">https://doi.org/10.1017/S1049023X200008</a> <a id="bookmark14"></a><a href="https://doi.org/10.1017/S1049023X20000862">62</a>.</p><p>16. Caviglia M, Cuthbertson J, Sdongos E, Faccincani R, Ragaz- zoni L, Weinstein ES. Translational Science in Disaster Medi- cine: from grant to deliverables. Int J Disaster Risk Reduction.</p><p>2022 Jul 1;</p><p>17. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. <a id="bookmark17"></a>2018;169(7):467–73. <a href="https://doi.org/10.7326/M18-0850">https://doi.org/10.7326/M18-0850</a>.</p><p>18. Munn Z, Peters MDJ, Stern C, Tufanaru C, McArthur A, Aro- mataris E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med Res Methodol. 2018;18(1):143. <a href="https://doi.org/10.1186/s12874-018-0611-x">https://</a> <a id="bookmark20"></a><a href="https://doi.org/10.1186/s12874-018-0611-x">doi.org/10.1186/s12874-018-0611-x</a>.</p><p>19. Cancio LC, Wade CE, West SA, Holcomb JB. Prediction of mortality and of the need for massive transfusion in casualties arriving at combat support hospitals in Iraq. J Trauma. 2008 Feb;64(2 Suppl):S51–55; discussion S55–56. <a href="https://doi.org/10.1097/TA.0b013e3181608c21">https://doi.org/</a> <a href="https://doi.org/10.1097/TA.0b013e3181608c21">10.1097/TA.0b013e3181608c21</a></p><p>20. Coimbra R, Lee J, Bansal V, Hollingsworth-Fridlund P. Rec- ognizing/accepting futility: prehospital, emergency center, operating room, and intensive care unit. J Trauma Nurs. 2007 <a id="bookmark4"></a>Jun;14(2):73–6; quiz 77–8. <a href="https://doi.org/10.1097/01.JTN.0000278791.43783.df">https://doi.org/10.1097/01.JTN.</a> <a id="bookmark34"></a><a id="bookmark5"></a><a href="https://doi.org/10.1097/01.JTN.0000278791.43783.df">0000278791.43783.df</a></p><p>21. Convertino VA, Cooke WH, Salinas J, Holcomb JB. Advanced Capabilities for Combat Medics. [cited 2022 Nov 14];</p><p>22. Arcos González P, Castro Delgado R, Cuartas Alvarez T, Garijo Gonzalo G, Martinez Monzon C, Pelaez Corres N, et al. The development and features of the Spanish prehospi- tal advanced triage method (META) for mass casualty inci-</p><p>dents. Scandinavian J Trauma Resuscitation Emergency Med. <a id="bookmark27"></a>2016;24(1):63. <a href="https://doi.org/10.1186/s13049-016-0255-y">https://doi.org/10.1186/s13049-016-0255-y</a>.</p><p>23. Cooke WH, Salinas J, Convertino VA, Ludwig DA, Hinds D, Duke JH, et al. Heart rate variability and its association with mortality in prehospital trauma patients. J Trauma. 2006 Feb;60(2):363–70; discussion 370. <a href="https://doi.org/10.1097/01.ta.0000196623.48952.0e">https://doi.org/10.1097/01.</a> <a href="https://doi.org/10.1097/01.ta.0000196623.48952.0e">ta.0000196623.48952.0e</a></p><p>24. Di Carlo S, Cavallaro G, Palomeque K, Cardi M, Sica G, Rossi P, et al. Prehospital hemorrhage assessment criteria: a concise review. J Trauma Nurs. 2021;28(5):332–8. <a href="https://doi.org/10.1097/JTN.0000000000000608">https://doi.org/10.</a> <a href="https://doi.org/10.1097/JTN.0000000000000608">1097/JTN.0000000000000608</a>.</p><p>25. Duke JH, Holcomb JB. Noninvasive Continuous Physiologic Data Acquisition and Analysis as a Predictor of Outcome Fol- lowing Major Trauma: A Pilot Study [Internet]. [cited 2022 Nov 14].</p><p>26. Eastridge BJ, Butler F, Wade CE, Holcomb JB, Salinas J, Champion HR, et al. Field triage score (FTS) in battlefeld casualties: validation of a novel triage technique in a combat environment. Am J Surg. 2010;200(6):724–7. <a href="https://doi.org/10.1016/j.amjsurg.2010.08.006">https://doi.org/</a> <a id="bookmark42"></a><a href="https://doi.org/10.1016/j.amjsurg.2010.08.006">10.1016/j.amjsurg.2010.08.006</a>.</p><p>27. Elmasllari E, Reiners R. Learning From Non-Acceptance: Design Dimensions for User Acceptance of E-Triage Systems. In: 14th Proceedings of the International Conference on Infor- mation Systems for Crisis Response and Management, Albi, France, May 21–24, 2017 [Internet]. ISCRAM Association; 2017 [cited 2022 Nov 14].</p><p>28. Jetten WD, Seesink J, Klimek M. Prehospital triage by lay person frst responders: a scoping review and proposal for a new prehospital triage tool. Disaster Med Public Health Prep. <a id="bookmark13"></a><a id="bookmark36"></a>2021;8:1–11. <a href="https://doi.org/10.1017/dmp.2021.19">https://doi.org/10.1017/dmp.2021.19</a>.</p><p>29. Lockey DJ, Mackenzie R, Redhead J, Wise D, Harris T, Weaver A, et al. London bombings July 2005: the immediate pre-hospi- tal medical response. Resuscitation. 2005;66(2):ix–xii. <a href="https://doi.org/10.1016/j.resuscitation.2005.07.005">https://</a> <a id="bookmark23"></a><a href="https://doi.org/10.1016/j.resuscitation.2005.07.005">doi.org/10.1016/j.resuscitation.2005.07.005</a>.</p><p>30. Lyle K, Thompson T, Graham J. Pediatric mass casualty: tri- age and planning for the prehospital provider. Clin Pediatric</p><p>a 灬</p><p>Emergency Med. 2009;10(3):173–85. <a href="https://doi.org/10.1016/j.cpem.2009.06.004">https://doi.org/10.1016/j.</a> <a id="bookmark41"></a><a href="https://doi.org/10.1016/j.cpem.2009.06.004">cpem.2009.06.004</a>.</p><p>31. Maddry J, Savell S, BaldwinDS. Austere, Pre-Transport, Qualita- tive Clinical Testing. [cited 2022 Nov 14];</p><p>32. Martín-Rodríguez F, López-Izquierdo R, Del Pozo VC, Del- gado Benito JF, Carbajosa Rodríguez V, Diego Rasilla MN, et al. Accuracy of national early warning score 2 (NEWS2) in prehospital triage on in-hospital early mortality: a multi-center observational prospective cohort study. Prehosp Disaster Med. 2019;34(6):610–8. <a href="https://doi.org/10.1017/S1049023X19005041">https://doi.org/10.1017/S1049023X190050</a> <a href="https://doi.org/10.1017/S1049023X19005041">41</a>.</p><p>33. Newgard CD, Richardson D, Holmes JF, Rea TD, Hsia RY, Mann NC, et al. Physiologic feld triage criteria for identifying seri- ously injured older adults. PrehospEmerg Care. 2014;18(4):461–</p><p>70. <a href="https://doi.org/10.3109/10903127.2014.912707">https://doi.org/10.3109/10903127.2014.912707</a>.</p><p>34. Newgard CD, Rudser K, Hedges JR, Kerby JD, Stiell IG, Davis DP, et al. A critical assessment of the out-of-hospital trauma triage guidelines for physiologic abnormality. J Trauma . 2010;68(2):452–62. <a href="https://doi.org/10.1097/TA.0b013e3181ae20c9">https://doi.org/10.1097/TA.0b013e3181</a> <a id="bookmark28"></a><a href="https://doi.org/10.1097/TA.0b013e3181ae20c9">ae20c9</a>.</p><p>35. Newgard CD, Cheney TP, Chou R, Fu R, Daya MR, O’Neil ME, et al. Out-of-hospital circulatory measures to identify patients with serious injury: a systematic review. Acad Emerg Med. <a id="bookmark37"></a>2020;27(12):1323–39. <a href="https://doi.org/10.1111/acem.14056">https://doi.org/10.1111/acem.14056</a>.</p><p>36. Parker B. Neural network medical decision algorithms for pre- hospital trauma care [Internet]. [cited 2022 Sep 29].</p><p>37. Reifman J, Chen L, Khitrov MY, Reisner AT. Automated Deci- sion-Support Technologies for Prehospital Care of Trauma Casu- alties [Internet]. [cited 2022 Nov 14].</p><p>38. Reisner A, Chen X, Kumar K, Reifman J. Prehospital heart rate and blood pressure increase the positive predictive value of the glasgow coma scale for high-mortality traumatic brain injury. J Neurotrauma. 2014;31(10):906–13. <a href="https://doi.org/10.1089/neu.2013.3128">https://doi.org/10.1089/neu.</a> <a id="bookmark38"></a><a href="https://doi.org/10.1089/neu.2013.3128">2013.3128</a>.</p><p>39. Rickards CA, Ryan KL, Cooke WH, Romero SA, Convertino VA. Combat stress or hemorrhage? Evidence for a decision- assist algorithm for remote triage. Aviat Space Environ Med. 2008;79(7):670–6. <a href="https://doi.org/10.3357/asem.2223.2008">https://doi.org/10.3357/asem.2223.2008</a>.</p><p>40. Rodriguez D, Heuer S, Guerra A, Stork W, Weber B, Eichler M. Towards automatic sensor-based triage for individual remote monitoring during mass casualty incidents. In: 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2014. p. 544–51. <a href="https://doi.org/10.1109/BIBM.2014.6999217">https://doi.org/10.1109/BIBM.2014.</a> <a id="bookmark39"></a><a href="https://doi.org/10.1109/BIBM.2014.6999217">6999217</a></p><p>41. Romero Pareja R, Castro Delgado R, Turégano Fuentes F, Jhon Thissard-Vasallo I, Sanz Rosa D, Arcos GP. Prehospital triage for mass casualty incidents using the META method for early surgical assessment: retrospective validation of a hospital trauma registry. Eur J Trauma Emerg Surg. 2020;46(2):425–33. <a href="https://doi.org/10.1007/s00068-018-1040-6">https://</a> <a id="bookmark43"></a><a href="https://doi.org/10.1007/s00068-018-1040-6">doi.org/10.1007/s00068-018-1040-6</a>.</p><p>42. Ryan K, George D, Liu J, Mitchell P, Nelson K, Kue R. The use of feld triage in disaster and mass casualty incidents: a survey of current practices by EMS personnel. Prehosp Emerg Care. 2018;22(4):520–6. <a href="https://doi.org/10.1080/10903127.2017.1419323">https://doi.org/10.1080/10903127.2017.</a> <a id="bookmark24"></a><a href="https://doi.org/10.1080/10903127.2017.1419323">1419323</a>.</p><p>43. Turner CDA, Lockey DJ, Rehn M. Pre-hospital management of mass casualty civilian shootings: a systematic literature <a id="bookmark54"></a>review. Crit Care. 2016;20(1):362. <a href="https://doi.org/10.1186/s13054-016-1543-7">https://doi.org/10.1186/</a> <a id="bookmark44"></a><a href="https://doi.org/10.1186/s13054-016-1543-7">s13054-016-1543-7</a>.</p><p>44. Zhao X, Rafq A, Hummel R, Fei D-Y, Merrell RC. Integra- tion of information technology, wireless networks, and personal digital assistants for triage and casualty. Telemed J E Health. <a id="bookmark21"></a>2006;12(4):466–74. <a href="https://doi.org/10.1089/tmj.2006.12.466">https://doi.org/10.1089/tmj.2006.12.466</a>.</p><p>45. Lin C-H, Lin C-H, Tai C-Y, Lin Y-Y, Shih FF-Y. Challenges of burn mass casualty incidents in the prehospital setting: les- sons from the formosa fun coast park color party. Prehospital</p><p>Emergency Care. 2019 Jan 2;23(1):44–8. <a href="https://doi.org/10.1080/10903127.2018.1479473">https://doi.org/10.</a> <a id="bookmark45"></a><a href="https://doi.org/10.1080/10903127.2018.1479473">1080/10903127.2018.1479473</a></p><p>46. Ashkenazi I, Isakovich B, Kluger Y, Alfci R, Kessel B, Bet- ter OS. Prehospital management of earthquake casualties bur- ied under rubble. Prehosp Disaster Med. 2005;20(2):122–33. <a href="https://doi.org/10.1017/s1049023x00002302">https://doi.org/10.1017/s1049023x00002302</a>.</p><p>47. Bachman MW, Anzalone BC, Williams JG, DeLuca MB, Gar- ner DG, Preddy JE, et al. Evaluation of an integrated rescue task force model for active threat response. Prehosp Emerg Care. 2019;23(3):309–18. <a href="https://doi.org/10.1080/10903127.2018.1521487">https://doi.org/10.1080/10903127.</a> <a id="bookmark47"></a><a href="https://doi.org/10.1080/10903127.2018.1521487">2018.1521487</a>.</p><p>48. Baker DJ. Management of respiratory failure in toxic disasters. Resuscitation. 1999;42(2):125–31 . <a href="https://doi.org/10.1016/S0300-9572(99)00098-2">https://doi.org/10.1016/</a> <a href="https://doi.org/10.1016/S0300-9572(99)00098-2">S0300-9572(99)00098-2</a>.</p><p>49. Bartkus EA, Daya M, Hedges JR, Jui J. ExacTech blood glu- cose meter clinical trial. Prehosp Disaster Med. 1993;8(3):217–</p><p><a id="bookmark52"></a>27. <a href="https://doi.org/10.1017/s1049023x00040395">https://doi.org/10.1017/s1049023x00040395</a>.</p><p>50. Blackbourne LH, Baer DG, Eastridge BJ, Kheirabadi B,Bagley S, Kragh JF, et al. Military medical revolution: prehospital combat casualty care. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S372-377. <a href="https://doi.org/10.1097/TA.0b013e3182755662">https://doi.org/10.1097/TA.0b013e3182</a> <a id="bookmark53"></a><a href="https://doi.org/10.1097/TA.0b013e3182755662">755662</a>.</p><p>51. Bobko JP, Lai TT, Smith R, Shapiro G, Baldridge T, Callaway DW. Tactical emergency casualty care?pediatric appendix: novel guidelines for the care of the pediatric casualty in the high-threat, prehospital environment. J SpecOperMed. 2013;13(4):94–107.</p><p><a href="https://doi.org/10.55460/EF77-LDYW">https://doi.org/10.55460/EF77-LDYW</a></p><p>52. Ct B, Wg D. Organizing the orthopaedic trauma association mass casualty response team. Clinical orthopaedics and related research [Internet]. 2004 May [cited 2022 Nov 14];(422). <a href="https://doi.org/10.1097/01.blo.0000131200.12795.2b">https://</a> <a id="bookmark30"></a><a href="https://doi.org/10.1097/01.blo.0000131200.12795.2b">doi.org/10.1097/01.blo.0000131200.12795.2b</a></p><p>53. Boué Y, Payen J-F, Brun J, Thomas S, Levrat A, Blancher M, et al. Survival after avalanche-induced cardiac arrest. Resuscita- tion. 2014;85(9):1192–6. <a href="https://doi.org/10.1016/j.resuscitation.2014.06.015">https://doi.org/10.1016/j.resuscitation.</a> <a id="bookmark31"></a><a href="https://doi.org/10.1016/j.resuscitation.2014.06.015">2014.06.015</a>.</p><p>54. Brugger H, Paal P, Boyd J. Prehospital resuscitation of the bur- ied avalanche victim. High Alt Med Biol. 2011;12(3):199–205. <a href="https://doi.org/10.1089/ham.2011.1025">https://doi.org/10.1089/ham.2011.1025</a>.</p><p>55. Cardoso MM, Banner MJ, Melker RJ, Bjoraker DG. Portable devices used to detect endotracheal intubation during emergency situations: a review. Crit Care Med. 1998;26(5):957–64. <a href="https://doi.org/10.1097/00003246-199805000-00036">https://</a> <a id="bookmark59"></a><a href="https://doi.org/10.1097/00003246-199805000-00036">doi.org/10.1097/00003246-199805000-00036</a>.</p><p>56. Carley S, Mackway-Jones K, Randic L, Dunn K. Planning for major burns incidents by implementing an accelerated Delphi technique. Burns. 2002;28(5):413–8. <a href="https://doi.org/10.1016/S0305-4179(02)00107-9">https://doi.org/10.1016/</a> <a id="bookmark48"></a><a href="https://doi.org/10.1016/S0305-4179(02)00107-9">S0305-4179(02)00107-9</a>.</p><p>57. Carli P, Telion C, Baker D. Terrorism in France. Prehosp Disas- ter Med. 2003;18(2):92–9. <a href="https://doi.org/10.1017/s1049023x00000820">https://doi.org/10.1017/s1049023x0</a> <a href="https://doi.org/10.1017/s1049023x00000820">0000820</a>.</p><p>58. Corcoran F, Bystrzycki A, Masud S, Mazur SM, Wise D, Harris T. Ultrasound in pre-hospital trauma care. Trauma. 2016;18(2):101–10. <a href="https://doi.org/10.1177/1460408615606753">https://doi.org/10.1177/1460408615606753</a>.</p><p>59. Davis BL, Martin MJ, Schreiber M. Military resuscitation: lessons from recent battlefeld experience. Curr Trauma Rep. <a id="bookmark32"></a>2017;3(2):156–63. <a href="https://doi.org/10.1007/s40719-017-0088-9">https://doi.org/10.1007/s40719-017-0088-9</a>.</p><p>60. de Schoutheete J-C, Hachimi Idrissi S, Watelet J-B. Pre-hospi- tal interventions: introduction to life support systems. B-ENT. 2016;Suppl 26(1):41–54. PMID:29461733</p><p>61. DudarykR, Pretto EA. Resuscitation in a multiple casualty event. Anesthesiol Clin. 2013;31(1):85–106. <a href="https://doi.org/10.1016/j.anclin.2012.11.002">https://doi.org/10.1016/j.</a> <a href="https://doi.org/10.1016/j.anclin.2012.11.002">anclin.2012.11.002</a>.</p><p>62. Eastridge BJ, Mabry RL, Seguin P, Cantrell J, Tops T, Uribe P, et al. Death on the battlefeld (2001–2011): implications for the future of combat casualty care. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S431-437. <a href="https://doi.org/10.1097/TA.0b013e3182755dcc">https://doi.org/10.1097/TA.0b013</a> <a href="https://doi.org/10.1097/TA.0b013e3182755dcc">e3182755dcc</a>.</p><p>a 灬</p><p>63. Eilertsen KA, Winberg M,JeppesenE, Hval G, Wisborg T. Pre- hospital tourniquets in civilians: a systematic review. Prehosp <a id="bookmark51"></a>Disaster Med. 2021;36(1):86–94. <a href="https://doi.org/10.1017/S1049023X20001284">https://doi.org/10.1017/S1049</a> <a id="bookmark46"></a><a href="https://doi.org/10.1017/S1049023X20001284">023X20001284</a>.</p><p>64. Fattah S, Rehn M, Reierth E, Wisborg T. Systematic literature review of templates for reporting prehospital major incident medical management. BMJ Open. 2013 Aug 1;3(8):e002658.</p><p><a href="https://doi.org/10.1136/bmjopen-2013-002658">https://doi.org/10.1136/bmjopen-2013-002658</a></p><p>65. Fuse A, Okumura T, Tokuno S, Saitoh D, Yokota H. Current Status of Preparedness for Blast Injuries in Japan. 2011;54(5):8</p><p>66. Hardwick JM, Murnan SD, Morrison-Ponce DP, Devlin JJ. Field expedient vasopressors during aeromedical evacuation: a case series from the puerto rico disaster response. Prehosp Disaster Med. 2018;33(6):668–72. <a href="https://doi.org/10.1017/S1049023X18000973">https://doi.org/10.1017/S1049023X1</a> <a href="https://doi.org/10.1017/S1049023X18000973">8000973</a>.</p><p>67. Horrocks P, Hobbs L, Tippett V, Aitken P. Paramedic disaster health management competencies: a scoping review. Prehosp Disaster Med. 2019;34(3):322–9. <a href="https://doi.org/10.1017/S1049023X19004357">https://doi.org/10.1017/S1049</a> <a href="https://doi.org/10.1017/S1049023X19004357">023X19004357</a>.</p><p>68. Jacobs LM, WadeDS, McSwain NE, Butler FK, Fabbri WP, East- man AL, et al. The hartford consensus: THREAT, a medical dis- aster preparedness concept. J Am Coll Surg. 2013;217(5):947–</p><p><a id="bookmark60"></a>53. <a href="https://doi.org/10.1016/j.jamcollsurg.2013.07.002">https://doi.org/10.1016/j.jamcollsurg.2013.07.002</a>.</p><p>69. Kornhall DK, Martens-Nielsen J. The prehospital management of avalanche victims. J R Army Med Corps. 2016;162(6):406–12. <a href="https://doi.org/10.1136/jramc-2015-000441">https://doi.org/10.1136/jramc-2015-000441</a>.</p><p>70. Lal D, Weiland S, Newton M, Flaten A, Schurr M. Prehospital hyperventilation after brain injury: a prospective analysis of pre- hospital and early hospital hyperventilation of the brain-injured patient. Prehosp Disaster Med. 2003;18(1):20–3. <a href="https://doi.org/10.1017/s1049023x00000637">https://doi.org/</a> <a id="bookmark49"></a><a href="https://doi.org/10.1017/s1049023x00000637">10.1017/s1049023x00000637</a>.</p><p>71. Laurent JF, Richter F, Michel A. Management of victims of urban chemical attack: the French approach. Resuscitation. 1999;42(2):141–9 . <a href="https://doi.org/10.1016/s0300-9572(99)00099-4">https://doi.org/10.1016/s0300-9572(99)</a> <a href="https://doi.org/10.1016/s0300-9572(99)00099-4">00099-4</a>.</p><p>72. Leclerc T, Potokar T, Hughes A, Norton I, Alexandru C, Haik J, et al. A simplifed fuid resuscitation formula for burns in mass casualty scenarios: analysis of the consensus recommendation from the WHO emergency medical teams technical working group on burns. Burns. 2021;47(8):1730–8. <a href="https://doi.org/10.1016/j.burns.2021.02.022">https://doi.org/10.</a> <a id="bookmark55"></a><a href="https://doi.org/10.1016/j.burns.2021.02.022">1016/j.burns.2021.02.022</a>.</p><p>73. Loftus A, Pynn H, Parker P. Improvised frst aid techniques for terrorist attacks. Emerg Med J. 2018;35(8):516–21. <a href="https://doi.org/10.1136/emermed-2018-207480">https://doi.</a> <a href="https://doi.org/10.1136/emermed-2018-207480">org/10.1136/emermed-2018-207480</a>.</p><p>74. Mansky R, Scher C. Thoracic trauma in military settings: a review of current practices and recommendations. Curr Opin Anaesthesiol. 2019;32(2):227–33. <a href="https://doi.org/10.1097/ACO.0000000000000694">https://doi.org/10.1097/ACO.</a> <a id="bookmark29"></a><a href="https://doi.org/10.1097/ACO.0000000000000694">0000000000000694</a>.</p><p>75. MardonesA, Arellano P, Rojas C, Gutierrez R, Oliver N, Borgna V. Prevention of crush syndrome through aggressive early resus- citation: clinical case in a buried Worker. Prehosp Disaster Med. 2016;31(3):340–2. <a href="https://doi.org/10.1017/S1049023X16000327">https://doi.org/10.1017/S1049023X160003</a> <a id="bookmark50"></a><a href="https://doi.org/10.1017/S1049023X16000327">27</a>.</p><p>76. O’Brien DJ, Walsh DW, Terrif CM, Hall AH. Empiric man- agement of cyanide toxicity associated with smoke inhalation. Prehosp Disaster Med. 2011;26(5):374–82. <a href="https://doi.org/10.1017/S1049023X11006625">https://doi.org/10.</a> <a id="bookmark56"></a><a href="https://doi.org/10.1017/S1049023X11006625">1017/S1049023X11006625</a>.</p><p>77. Pons PT, Jerome J, McMullen J, Manson J, Robinson J, Chap- leauW. The hartford consensus on active shooters: implementing the continuum of prehospital trauma response. J Emerg Med. 2015;49(6):878–85. <a href="https://doi.org/10.1016/j.jemermed.2015.09.013">https://doi.org/10.1016/j.jemermed.2015.09.</a> <a href="https://doi.org/10.1016/j.jemermed.2015.09.013">013</a>.</p><p>78. Randic L, Carley S, Mackway-Jones K, Dunn K. Planning for major burns incidents in the UK using an accelerated Delphi technique. Burns. 2002;28(5):405–12. <a href="https://doi.org/10.1016/S0305-4179(02)00108-0">https://doi.org/10.1016/</a> <a href="https://doi.org/10.1016/S0305-4179(02)00108-0">S0305-4179(02)00108-0</a>.</p><p>79. Riccobono D, Valente M, Drouet M, Calamai F, Abriat A. French policies for victim management during mass radio- logical accidents/attacks. Health Phys. 2018;115(1):179–84. <a id="bookmark57"></a><a href="https://doi.org/10.1097/HP.0000000000000839">https://doi.org/10.1097/HP.0000000000000839</a>.</p><p>80. Soffer D, Klausner JM. Trauma system configurations in other countries: the Israeli model. Surg Clin North Am. 2012 Aug;92(4):1025–40, x. <a href="https://doi.org/10.1016/j.suc.2012.04.007">https://doi.org/10.1016/j.suc.2012.04.</a> <a id="bookmark22"></a><a href="https://doi.org/10.1016/j.suc.2012.04.007">007</a></p><p>81. Tokuda Y, Kikuchi M, Takahashi O, Stein GH. Prehospital man- agement of sarin nerve gas terrorism in urban settings: 10 years of progress after the Tokyo subway sarin attack. Resuscitation. 2006;68(2):193–202. <a href="https://doi.org/10.1016/j.resuscitation.2005.05.023">https://doi.org/10.1016/j.resuscitation.</a> <a id="bookmark25"></a><a href="https://doi.org/10.1016/j.resuscitation.2005.05.023">2005.05.023</a>.</p><p>82. CDC 2017 Hurricane Incident Management System Team. Hur- ricane Season Public Health Preparedness, Response, andRecov- ery Guidance for Health Care Providers, Response and Recov- ery Workers, and Afected Communities - CDC, 2017. MMWR Morb Mortal Wkly Rep. 2017 Sep 22;66(37):995–8. <a href="https://doi.org/10.15585/mmwr.mm6637e1">https://doi.</a> <a id="bookmark91"></a><a href="https://doi.org/10.15585/mmwr.mm6637e1">org/10.15585/mmwr.mm6637e1</a></p><p>83. Adini B, Bodas M, Nilsson H, Peleg K. Policies for managing emergency medical services in mass casualty incidents. Injury. 2017;48(9):1878–83. <a href="https://doi.org/10.1016/j.injury.2017.05.034">https://doi.org/10.1016/j.injury.2017.05.</a> <a href="https://doi.org/10.1016/j.injury.2017.05.034">034</a>.</p><p>84. Adini B, Cohen R, Glassberg E, Azaria B, Simon D, Stein M, et al. Reconsidering policy of casualty evacuation in a remote mass-casualty incident. Prehosp Disaster Med. 2014;29(1):91–5. <a href="https://doi.org/10.1017/S1049023X13008935">https://doi.org/10.1017/S1049023X13008935</a>.</p><p>85. Adini B, Peleg K. On constant alert: lessons to be learned from Israel’s emergency response to mass-casualty terrorism incidents. Health Af (Millwood). 2013;32(12):2179–85. <a href="https://doi.org/10.1377/hlthaff.2013.0956">https://doi.org/10.</a> <a id="bookmark70"></a><a href="https://doi.org/10.1377/hlthaff.2013.0956">1377/hlthaf.2013.0956</a>.</p><p>86. Agiv-Berland A, Ashkenazi I, Aharonson-Daniel L. The Cross- National Adaptability of EMS Protocols for Mass Casualty Inci- dents. Journal of Homeland Security and Emergency Manage- ment [Internet]. 2012 Oct 31 [cited 2022 Nov 14];9(2). <a href="https://doi.org/10.1515/1547-7355.2036">https://</a> <a href="https://doi.org/10.1515/1547-7355.2036">doi.org/10.1515/1547-7355.2036</a></p><p>87. AlThobaityA, Plummer V, Williams B. What are the most com- mon domains of the core competencies of disaster nursing? A scoping review Int Emerg Nurs. 2017;31:64–71. <a href="https://doi.org/10.1016/j.ienj.2016.10.003">https://doi.org/</a> <a id="bookmark71"></a><a href="https://doi.org/10.1016/j.ienj.2016.10.003">10.1016/j.ienj.2016.10.003</a>.</p><p>88. Amat Camacho N, Karki K, Subedi S, von Schreeb J. Interna- tional Emergency Medical Teams in the Aftermath of the 2015</p><p>Nepal Earthquake. Prehosp Disaster Med. 2019;34(3):260–4. <a id="bookmark72"></a><a href="https://doi.org/10.1017/S1049023X19004291">https://doi.org/10.1017/S1049023X19004291</a>.</p><p>89. Amlôt R, Carter H, Riddle L, Larner J, Chilcott RP. Volun- teer trials of a novel improvised dry decontamination proto- col for use during mass casualty incidents as part of the UK’S Initial Operational Response (IOR). PLOS ONE. 2017 Jun 16;12(6):e0179309. <a href="https://doi.org/10.1371/journal.pone.0179309">https://doi.org/10.1371/journal.pone.01793</a> <a id="bookmark66"></a><a href="https://doi.org/10.1371/journal.pone.0179309">09</a></p><p>90. Amlot R, Larner J, Matar H, Jones DR, Carter H, Turner EA, et al. Comparative analysis of showering protocols for mass-cas- ualty decontamination. Prehosp Disaster Med. 2010;25(5):435–</p><p><a id="bookmark92"></a>9. <a href="https://doi.org/10.1017/s1049023x00008529">https://doi.org/10.1017/s1049023x00008529</a>.</p><p>91. Amram O, Schuurman N, Hedley N, Hameed SM. A web-based model to support patient-to-hospital allocation in mass casualty incidents. J Trauma Acute Care Surg. 2012;72(5):1323–8. <a href="https://doi.org/10.1097/TA.0b013e318246e879">https://</a> <a id="bookmark67"></a><a href="https://doi.org/10.1097/TA.0b013e318246e879">doi.org/10.1097/TA.0b013e318246e879</a>.</p><p>92. Anan H, Otomo Y, Homma M, Oshiro K, Kondo H, Shimamura F, et al. Proposal for reforming prehospital response to chemical terrorism disasters in Japan: going back to the basics of saving the lives of the injured by securing the safety of the rescue team. Prehosp Disaster Med. 2020;35(1):88–91. <a href="https://doi.org/10.1017/S1049023X19005119">https://doi.org/10.</a> <a href="https://doi.org/10.1017/S1049023X19005119">1017/S1049023X19005119</a>.</p><p>93. Arnold JL, Levine BN, ManmathaR, Lee F, ShenoyP, Tsai M-C, et al. Information-sharing in out-of-hospital disaster response:</p><p>a 灬</p><p>the future role of information technology. PrehospDisaster Med. 2004;19(3):201–7. <a href="https://doi.org/10.1017/s1049023x00001783">https://doi.org/10.1017/s1049023x00001783</a>.</p><p>94. Assa A, Landau D-A, Barenboim E, Goldstein L. Role of air- medical evacuation in mass-casualty incidents–a train collision experience. Prehosp Disaster Med. 2009;24(3):271–6. <a href="https://doi.org/10.1017/s1049023x00006920">https://</a> <a href="https://doi.org/10.1017/s1049023x00006920">doi.org/10.1017/s1049023x00006920</a>.</p><p>95. Aylwin CJ, König TC, Brennan NW, Shirley PJ, Davies G, Walsh MS, et al. Reduction in critical mortality in urban mass casualty incidents: analysis of triage, surge, and resource use after the London bombings on July 7, 2005. Lancet. 2006;368(9554):2219–25 . <a href="https://doi.org/10.1016/S0140-6736(06)69896-6">https://doi.org/10.1016/S0140-</a> <a id="bookmark61"></a><a href="https://doi.org/10.1016/S0140-6736(06)69896-6">6736(06)69896-6</a>.</p><p>96. Bloch YH, Schwartz D, Pinkert M, Blumenfeld A, Avinoam S, Hevion G, et al. Distribution of casualties in a mass-casualty incident with three local hospitals in the periphery of a densely populated area: lessons learned from the medical management</p><p>of a terrorist attack. Prehosp Disaster Med. 2007;22(3):186–92. <a href="https://doi.org/10.1017/s1049023x00004635">https://doi.org/10.1017/s1049023x00004635</a>.</p><p>97. Campion EM, Juillard C, Knudson MM, Dicker R, Cohen MJ, Mackersie R, et al. Reconsidering the resources needed for mul- tiple casualty events: lessons learned from the crash of asiana airlines fight 214. JAMA Surg. 2016;151(6):512–7. <a href="https://doi.org/10.1001/jamasurg.2015.5107">https://doi.</a> <a id="bookmark93"></a><a href="https://doi.org/10.1001/jamasurg.2015.5107">org/10.1001/jamasurg.2015.5107</a>.</p><p>98. Carter H, Drury J, Rubin GJ, Williams R,Amlôt R. Public expe- riences of mass casualty decontamination. Biosecur Bioterror. <a id="bookmark68"></a>2012;10(3):280–9. <a href="https://doi.org/10.1089/bsp.2012.0013">https://doi.org/10.1089/bsp.2012.0013</a>.</p><p>99. Castro Delgado R, Naves Gómez C, Cuartas Álvarez T, Arcos GP. An epidemiological approach to mass casualty inci- dents in the Principality of Asturias (Spain). Scand J Trauma Resusc Emerg Med. 2016;24(24):18. <a href="https://doi.org/10.1186/s13049-016-0211-x">https://doi.org/10.1186/</a> <a id="bookmark73"></a><a href="https://doi.org/10.1186/s13049-016-0211-x">s13049-016-0211-x</a>.</p><p>100. Chan TC, Griswold WG, Buono C, Kirsh D, Lyon J, Killeen JP, et al. Impact of wireless electronic medical record system on the quality of patient documentation by emergency feld responders during a disaster mass-casualty exercise. Prehosp Disaster Med. 2011;26(4):268–75. <a href="https://doi.org/10.1017/S1049023X11006480">https://doi.org/10.1017/S1049023X110064</a> <a href="https://doi.org/10.1017/S1049023X11006480">80</a>.</p><p>101. Chilcott RP, Mitchell H, Matar H. Optimization of nonambulant mass casualty decontamination protocols as part of an initial or specialist operational response to chemical incidents. Prehosp Emerg Care. 2019;23(1):32–43. <a href="https://doi.org/10.1080/10903127.2018.1469705">https://doi.org/10.1080/10903</a> <a id="bookmark74"></a><a id="bookmark75"></a><a href="https://doi.org/10.1080/10903127.2018.1469705">127.2018.1469705</a>.</p><p>102. Chokshi NK, Behar S, Nager AL, Dorey F, Upperman JS. Dis- aster management among pediatric surgeons: preparedness, training and involvement. Am J Disaster Med. 2008;3(1):5–14 (<strong>PMID:18450274</strong>).</p><p>103. Collins S, James T, Carter H, Symons C, Southworth F, Foxall K, et al. Mass casualty decontamination for chemical incidents: research outcomes and future priorities. Int J Environ Res Pub- lic Health. 2021;18(6):3079. <a href="https://doi.org/10.3390/ijerph18063079">https://doi.org/10.3390/ijerph1806</a> <a id="bookmark94"></a><a href="https://doi.org/10.3390/ijerph18063079">3079</a>.</p><p>104. Cordner S, Ellingham STD. Two halves make a whole: Both frst responders and experts are needed for the management and identifcation of the dead in large disasters. Forensic Sci Int. <a id="bookmark78"></a>2017;279:60–4. <a href="https://doi.org/10.1016/j.forsciint.2017.07.020">https://doi.org/10.1016/j.forsciint.2017.07.020</a>.</p><p>105. Cotter S. Treatment area considerations for mass casualty inci- dents. Emerg Med Serv. 2006;35(2):48–51 (<strong>PMID:16541952</strong>).</p><p>106. Cowley RA, Gretes AJ. EMS Response to Mass Casualties. Emerg Med Clin North Am. 1984;2(3):687–93. <a href="https://doi.org/10.1016/S0733-8627(20)30882-8">https://doi.org/</a> <a id="bookmark86"></a><a href="https://doi.org/10.1016/S0733-8627(20)30882-8">10.1016/S0733-8627(20)30882-8</a>.</p><p>107. Curnin S. Large civilian air medical jets: implications for Aus- tralian disaster health. Air MedJ. 2012;31(6):284–8. <a href="https://doi.org/10.1016/j.amj.2012.04.001">https://doi.</a> <a id="bookmark76"></a><a href="https://doi.org/10.1016/j.amj.2012.04.001">org/10.1016/j.amj.2012.04.001</a>.</p><p>108. Daddoust L, Asgary A, McBey KJ, Elliott S, Normand A. Spontaneous volunteer coordination during disasters and</p><p>emergencies: Opportunities, challenges, and risks . Inter- national Journal of Disaster Risk Reduction. 2021 Nov <a id="bookmark81"></a>1;65:102546. <a href="https://doi.org/10.1016/j.ijdrr.2021.102546">https://doi.org/10.1016/j.ijdrr.2021.102546</a></p><p>109. Dart R, Bevelaqua A, DeAtley C, Sidell F, Goldfrank L, Mad- sen J, et al. Countering Chemical Agents: Multi-specialty panel presents consensus guidelines for prehospital management of mass casualties from chemical warfare agents. Jems: Journal of Emergency Medical Services. 2006 Dec 1;31:36–41. <a href="https://doi.org/10.1016/S0197-2510(06)70586-1">https://</a> <a href="https://doi.org/10.1016/S0197-2510(06)70586-1">doi.org/10.1016/S0197-2510(06)70586-1</a></p><p>110. Daud L, Utaberta N, Ismail N, Yazid M, Mohd YUNOS MY, Mohd Arifn N, et al. Mitigating food disaster in Kelantan : Efectiveness of emergency response by volunteers. Advances in Environmental Biology. 2015 Jan 1;9:61–4.</p><p>111. Desmond M, Schwengel D, Chilson K, Rusy D, Ingram K, Ambardekar A, et al. Paediatric patients in mass casualty inci- dents: a comprehensive review and call to action. Br J Anaesth. 2022;128(2):e109–19. <a href="https://doi.org/10.1016/j.bja.2021.10.026">https://doi.org/10.1016/j.bja.2021.10.</a> <a id="bookmark95"></a><a href="https://doi.org/10.1016/j.bja.2021.10.026">026</a>.</p><p>112. Doyle CJ. Mass casualty incident. Integration with prehospi- tal care. Emerg Med Clin North Am. 1990 Feb;8(1):163–75. PMID:2403920</p><p>113. Egan JR, Amlôt R. Modelling mass casualty decontamination systems informed by feld exercise data. Int J Environ Res Pub- lic Health. 2012;9(10):3685–710. <a href="https://doi.org/10.3390/ijerph9103685">https://doi.org/10.3390/ijerp</a> <a href="https://doi.org/10.3390/ijerph9103685">h9103685</a>.</p><p>114. Epstein RH, Ekbatani A, Kaplan J, Shechter R, Grunwald Z. Development of a staff recall system for mass casualty incidents using cell phone text messaging. Anesth Analg. 2010;110(3):871–8. <a href="https://doi.org/10.1213/ANE.0b013e3181cb3f9e">https://doi.org/10.1213/ANE.0b013e3181</a> <a href="https://doi.org/10.1213/ANE.0b013e3181cb3f9e">cb3f9e</a>.</p><p>115. Fenn J, Rega P, Stavros M, Buderer NF. Assessment of U.S. heli- copter emergency medical services’ planning and preparedness for disaster response. Air Med J. 1999 Mar;18(1):12–5. <a href="https://doi.org/10.1016/s1067-991x(99)90003-2">https://</a> <a id="bookmark96"></a><a href="https://doi.org/10.1016/s1067-991x(99)90003-2">doi.org/10.1016/s1067-991x(99)90003-2</a></p><p>116. Garner A, Nocera A. Should New South Wales hospital dis- aster teams be sent to major incident sites? Aust N Z J Surg. 1999;69(10):702–6. <a href="https://doi.org/10.1046/j.1440-1622.1999.01672.x">https://doi.org/10.1046/j.1440-1622.1999.</a> <a id="bookmark82"></a><a href="https://doi.org/10.1046/j.1440-1622.1999.01672.x">01672.x</a>.</p><p>117. Grifths JL, Kirby NR, Waterson JA. Three years experience with forward-site mass casualty triage-, evacuation-, operating room-, ICU-, and radiography-enabled disaster vehicles: devel- opment of usage strategies from drills and deployments. Am J Disaster Med. 2014;9(4):273–85. <a href="https://doi.org/10.5055/ajdm.2014.0179">https://doi.org/10.5055/ajdm.</a> <a href="https://doi.org/10.5055/ajdm.2014.0179">2014.0179</a>.</p><p>118. Gulesan OB, Anil E, Boluk PS. Social media-based emergency management to detect earthquakes and organize civilian volun- teers. International Journal of Disaster Risk Reduction. 2021 Nov <a id="bookmark97"></a>1;65:102543. <a href="https://doi.org/10.1016/j.ijdrr.2021.102543">https://doi.org/10.1016/j.ijdrr.2021.102543</a></p><p>119. Hale JF. Managing a disaster scene and multiple casualties before help arrives. Crit Care Nurs Clin NorthAm. 2008 Mar;20(1):91– <a id="bookmark98"></a>102, vii. <a href="https://doi.org/10.1016/j.ccell.2007.10.012">https://doi.org/10.1016/j.ccell.2007.10.012</a></p><p>120. Hall TN, McDonald A, Peleg K. Identifying factors that may infuence decision-making related to the distribution of patients during a mass casualty incident. Disaster Med Public Health Prep. 2018;12(1):101–8. <a href="https://doi.org/10.1017/dmp.2017.43">https://doi.org/10.1017/dmp.2017.43</a>.</p><p>121. Han R, Wang W, Shi J. Motivation of sichuan earthquake volun- teers and its implication for emergency management. Proceed- ings—4th International Joint Conference on Computational Sci- ences and Optimization, CSO 2011. 2011. 658 p. <a href="https://doi.org/10.1109/CSO.2011.168">https://doi.org/</a> <a id="bookmark99"></a><a href="https://doi.org/10.1109/CSO.2011.168">10.1109/CSO.2011.168</a></p><p>122. Hunt P. Lessons identifed from the 2017 Manchester and Lon- don terrorism incidents. Part 1: introduction and the prehospital phase. BMJ Mil Health. 2020 Apr;166(2):111–4. <a href="https://doi.org/10.1136/jramc-2018-000934">https://doi.org/</a> <a href="https://doi.org/10.1136/jramc-2018-000934">10.1136/jramc-2018-000934</a></p><p>a 灬</p><p>123. Hyder S, Manzoor AF, Iqbal MA. Policy Implementation: Teachers’ Role as First Responders in Emergencies and Disas- ters. Kesmas: Jurnal Kesehatan Masyarakat Nasional (National Public Health Journal) [Internet]. 2020 Nov 1 [cited 2022 Nov <a id="bookmark100"></a>14];15(4). <a href="https://doi.org/10.21109/kesmas.v15i4.2989">https://doi.org/10.21109/kesmas.v15i4.2989</a></p><p>124. Ishikawa K, Jitsuiki K, Ohsaka H, Yoshizawa T, Obinata M, Omori K, et al. Management of a mass casualty event caused by electrocution using doctor helicopters. Air Med J. <a id="bookmark85"></a>2016;35(3):180–2. <a href="https://doi.org/10.1016/j.amj.2015.12.012">https://doi.org/10.1016/j.amj.2015.12.012</a>.</p><p>125. Kaplowitz L, Reece M, Hershey JH, Gilbert CM, Subbarao I. Regional health system response to the Virginia Tech mass casualty incident. Disaster Med Public Health Prep. 2007;1(1 Suppl):S9-13. <a href="https://doi.org/10.1097/DMP.0b013e318149f5a2">https://doi.org/10.1097/DMP.0b013e318149f5a2</a>.</p><p>126. Kearns RD, Holmes JH, Skarote MB, Cairns CB, Strickland SC, Smith HG, et al. Disasters; the 2010 Haitian earthquake and the evacuation of burn victims to US burn centers. Burns. 2014;40(6):1121–32. <a href="https://doi.org/10.1016/j.burns.2013.12.015">https://doi.org/10.1016/j.burns.2013.12.</a> <a href="https://doi.org/10.1016/j.burns.2013.12.015">015</a>.</p><p>127. Kearns R, Hubble M, Holmes J, Cairns B. Disaster planning: transportation resources and considerations for managing a burn disaster. J Burn Care Res. 2013;28:35. <a href="https://doi.org/10.1097/BCR.0b013e3182853cf7">https://doi.org/10.1097/</a> <a href="https://doi.org/10.1097/BCR.0b013e3182853cf7">BCR.0b013e3182853cf7</a>.</p><p>128. Khajehaminian MR, Ardalan A, Hosseini Boroujeni SM, Nejati A, Keshtkar A, Foroushani AR, et al. Criteria and models for the distribution of casualties in trauma-related mass casualty</p><p>incidents: a systematic literature review protocol. Syst Rev. <a id="bookmark83"></a>2017;6(1):141. <a href="https://doi.org/10.1186/s13643-017-0538-z">https://doi.org/10.1186/s13643-017-0538-z</a>.</p><p>129. Khajehaminian MR, Ardalan A, Keshtkar A, Hosseini Borou- jeni SM, Nejati A, Ebadati EOME, et al. A systematic literature review of criteria and models for casualty distribution in trauma related mass casualty incidents. Injury. 2018;49(11):1959–68. <a href="https://doi.org/10.1016/j.injury.2018.09.005">https://doi.org/10.1016/j.injury.2018.09.005</a>.</p><p>130. Kryvasheyeu Y, Chen H, Obradovich N, Moro E, Van Hen- tenryck P, Fowler J, et al. Rapid assessment of disaster dam- age using social media activity. Science Advances. 2016 Mar <a id="bookmark79"></a>11;2(3):e1500779. <a href="https://doi.org/10.1126/sciadv.1500779">https://doi.org/10.1126/sciadv.1500779</a></p><p>131. Lavon O, Hershko D, Barenboim E. Large-scale air-medical transport from a peripheral hospital to level-1 trauma centers after remote mass-casualty incidents in Israel. Prehosp Disaster Med. 2009;24(6):549–55. <a href="https://doi.org/10.1017/s1049023x00007500">https://doi.org/10.1017/s1049023x0</a> <a href="https://doi.org/10.1017/s1049023x00007500">0007500</a>.</p><p>132. Lee W-H, Chiu T-F, Ng C-J, Chen J-C. Emergency medical preparedness and response to a Singapore airliner crash. Acad Emerg Med. 2002;9(3):194–8. <a href="https://doi.org/10.1111/j.1553-2712.2002.tb00243.x">https://doi.org/10.1111/j.1553-</a> <a id="bookmark84"></a><a id="bookmark105"></a><a href="https://doi.org/10.1111/j.1553-2712.2002.tb00243.x">2712.2002.tb00243.x</a>.</p><p>133. Levy MJ. Intentional Mass Casualty Events: Implications for Prehospital Emergency Medical Services Systems. J Spec Oper <a id="bookmark87"></a>Med. 2015;15(4):157–9. <a href="https://doi.org/10.55460/K4BK-WQNR">https://doi.org/10.55460/K4BK-WQNR</a></p><p>134. Ludwig T, Kotthaus C, Reuter C, van Dongen S, Pipek V. Situ- ated crowdsourcing during disasters: managing the tasks of spon- taneous volunteers through public displays. Int J Hum Comput Stud. 2017;1(102):103–21. <a href="https://doi.org/10.1016/j.ijhcs.2016.09.008">https://doi.org/10.1016/j.ijhcs.2016.</a> <a id="bookmark101"></a><a href="https://doi.org/10.1016/j.ijhcs.2016.09.008">09.008</a>.</p><p>135. Martínez P, Jaime D, Contreras D, Moreno M, Bonacic C, Marín M. Design and validation of an instrument for selecting spontaneous volunteers during emergencies in natural disas- ters. International Journal of Disaster Risk Reduction. 2021 Jun <a id="bookmark77"></a>1;59:102243. <a href="https://doi.org/10.1016/j.ijdrr.2021.102243">https://doi.org/10.1016/j.ijdrr.2021.102243</a></p><p>136. McCunn M, Ashburn MA, Floyd TF, Schwab CW, Harrington P, Hanson CW, et al. An organized, comprehensive, and security- enabled strategic response to the Haiti earthquake: a description of pre-deployment readiness preparation and preliminary experi- ence from an academic anesthesiology department with no pre- existing international disaster response program. Anesth Analg.</p><p>2010;111(6):1438–44. <a href="https://doi.org/10.1213/ANE.0b013e3181f42fd3">https://doi.org/10.1213/ANE.0b013e3181</a> <a id="bookmark102"></a><a href="https://doi.org/10.1213/ANE.0b013e3181f42fd3">f42fd3</a>.</p><p>137. Monteith RG, Pearce LDR. Self-care decontamination within a chemical exposure mass-casualty incident. Prehosp Disaster Med. 2015;30(3):288–96. <a href="https://doi.org/10.1017/S1049023X15004677">https://doi.org/10.1017/S1049023X1</a> <a href="https://doi.org/10.1017/S1049023X15004677">5004677</a>.</p><p>138. Morris G. Common errors in mass casualty management. Corrective actions for the prehospital provider. JEMS. 1986 Feb;11(2):34–8. PMID:10275920</p><p>139. Mundorf AZ, Bartelink EJ, Mar-Cash E. DNA preservation in skeletal elements from the world trade center disaster: rec-</p><p>ommendations for mass fatality management. J Forensic Sci. 2009;54(4):739–45. <a href="https://doi.org/10.1111/j.1556-4029.2009.01045.x">https://doi.org/10.1111/j.1556-4029.2009.</a> <a id="bookmark62"></a><a href="https://doi.org/10.1111/j.1556-4029.2009.01045.x">01045.x</a>.</p><p>140. Nagata T, Rosborough SN, Rosborogh SN, VanRooyen MJ, Kozawa S, Ukai T, et al. Express railway disaster in Amagasaki: a review of urban disaster response capacity in Japan. Prehosp Disaster Med. 2006;21(5):345–52. <a href="https://doi.org/10.1017/s1049023x0000399x">https://doi.org/10.1017/s1049</a> <a id="bookmark88"></a><a href="https://doi.org/10.1017/s1049023x0000399x">023x0000399x</a>.</p><p>141. O’Neill PA. The ABC’s of disaster response. Scand J Surg. 2005;94(4):259–66. <a href="https://doi.org/10.1177/145749690509400403">https://doi.org/10.1177/145749690509400</a> <a id="bookmark103"></a><a href="https://doi.org/10.1177/145749690509400403">403</a>.</p><p>142. Ocak T, Duran A, Ozdes T, Hocagil C, Kucukbayrak A. Prob- lems encountered by volunteers assisting the relief eforts in van, turkey and the surrounding earthquake area. J Acad Emergency Med. 2013;24(12):66–70. <a href="https://doi.org/10.5152/jaem.2013.029">https://doi.org/10.5152/jaem.2013.</a> <a href="https://doi.org/10.5152/jaem.2013.029">029</a>.</p><p>143. Olchin L, Krutz A. Nurses as frst responders in a mass casualty: are you prepared?J Trauma Nurs. 2012;19(2):122–9. <a href="https://doi.org/10.1097/JTN.0b013e3182562984">https://doi.</a> <a id="bookmark89"></a><a href="https://doi.org/10.1097/JTN.0b013e3182562984">org/10.1097/JTN.0b013e3182562984</a>.</p><p>144. Orr SM, Robinson WA. The hyatt regency skywalk col- lapse: an EMS-based disaster response . Ann Emerg Med. 1983;12(10):601–5. <a href="https://doi.org/10.1016/S0196-0644(83)80203-0">https://doi.org/10.1016/S0196-0644(83)</a> <a id="bookmark104"></a><a href="https://doi.org/10.1016/S0196-0644(83)80203-0">80203-0</a>.</p><p>145. Paciarotti C, Cesaroni A, Bevilacqua M. The management of spontaneous volunteers: a successful model from a food emer- gency in Italy. IntJ Disaster Risk Reduction. 2018;1(31):260–74. <a id="bookmark69"></a><a href="https://doi.org/10.1016/j.ijdrr.2018.05.013">https://doi.org/10.1016/j.ijdrr.2018.05.013</a>.</p><p>146. Pereira BMT, Morales W, Cardoso RG, Fiorelli R, Fraga GP, Briggs SM. Lessons learned from a landslide catastrophe in Rio de Janeiro. Brazil Am J Disaster Med. 2013;8(4):253–8. <a href="https://doi.org/10.5055/ajdm.2013.0131">https://</a> <a id="bookmark63"></a><a href="https://doi.org/10.5055/ajdm.2013.0131">doi.org/10.5055/ajdm.2013.0131</a>.</p><p>147. Plischke M, Wolf KH, Lison T, Pretschner DP. Telemedical sup- port of prehospital emergency care in mass casualty incidents. Eur J Med Res. 1999;4(9):394–8 (<strong>PMID:10477508</strong>).</p><p>148. Postma ILE, Weel H, Heetveld MJ, van derZande I, Bijlsma TS, Bloemers FW, et al. Patient distribution in a mass casualty event of an airplane crash. Injury. 2013;44(11):1574–8. <a href="https://doi.org/10.1016/j.injury.2013.04.027">https://doi.org/</a> <a href="https://doi.org/10.1016/j.injury.2013.04.027">10.1016/j.injury.2013.04.027</a>.</p><p>149. Raiter Y, Farfel A, Lehavi O, Goren OB, Shamiss A, Priel Z, et al. Mass casualty incident management, triage, injury distribu- tion of casualties and rate of arrival of casualties at the hospitals: lessons from a suicide bomber attack in downtown Tel Aviv.</p><p>Emerg Med J. 2008;25(4):225–9. <a href="https://doi.org/10.1136/emj.2007.052399">https://doi.org/10.1136/emj.</a> <a href="https://doi.org/10.1136/emj.2007.052399">2007.052399</a>.</p><p>150. Ran Y, HadadE, Daher S, GanorO, Yegorov Y, Katzenell U, et al. Triage and air evacuation strategy for mass casualty events: a model based on combat experience. Mil Med. 2011;176(6):647– <a id="bookmark80"></a>51. <a href="https://doi.org/10.7205/milmed-d-10-00390">https://doi.org/10.7205/milmed-d-10-00390</a>.</p><p>151. Rauner MS, Schafhauser-Linzatti MM, Niessner H. Resource planning for ambulance services in mass casualty inci- dents: a DES-based policy model. Health Care Manag Sci. 2012;15(3):254–69. <a href="https://doi.org/10.1007/s10729-012-9198-7">https://doi.org/10.1007/s10729-012-9198-7</a>.</p><p>152. Romundstad L, Sundnes Ko, Pillgram-Larsen J, Røste Gk, Gil- bert M. Challenges of major incident management when excess</p><p>a 灬</p><p>resources are allocated: experiences from a mass casualty inci- dent after roof collapse of a military command center. Prehos- pital and disaster medicine [Internet]. 2004 Jun [cited 2022 Nov <a id="bookmark106"></a>14];19(2). <a href="https://doi.org/10.1017/s1049023x00001710">https://doi.org/10.1017/s1049023x00001710</a></p><p>153. Roy N. The Asian Tsunami: PAHO disaster guidelines in action in India. Prehosp Disaster Med. 2006;21(5):310–5. <a href="https://doi.org/10.1017/s1049023x00003939">https://doi.</a> <a href="https://doi.org/10.1017/s1049023x00003939">org/10.1017/s1049023x00003939</a>.</p><p>154. Salazar MK, Kelman B. Planning for biological disasters: occupational health nurses as “frst responders.” AAOHN J. <a id="bookmark108"></a>2002;50(4):174–81. <a href="https://doi.org/10.1177/216507990205000411">https://doi.org/10.1177/216507990205000</a> <a href="https://doi.org/10.1177/216507990205000411">411</a>.</p><p>155. Service Medical du Raid null, Reuter P-G, Baker C, Loeb T. Specifc stretchers enhance rapid extraction by tactical medi-</p><p>cal support teams in mass casualty incidents. Injury. 2019 Feb;50(2):358–64. <a href="https://doi.org/10.1016/j.injury.2018.12.012">https://doi.org/10.1016/j.injury.2018.12.012</a></p><p>156. Severance HW. Mass-casualty victim “surge” management. Pre- paring for bombings andblast-related injuries with possibility of hazardous materials exposure. N C MedJ. 2002 Oct;63(5):242–</p><p>6. PMID:12970967</p><p>157. Shah AA, Rehman A, Sayyed RH, Haider AH, Bawa A, Zafar SN, et al. Impact of a predefned hospital mass casualty response plan in a limited resource setting with no pre-hospital care sys- <a id="bookmark26"></a>tem. Injury. 2015;46(1):156–61. <a href="https://doi.org/10.1016/j.injury.2014.08.029">https://doi.org/10.1016/j.injury.</a> <a id="bookmark107"></a><a href="https://doi.org/10.1016/j.injury.2014.08.029">2014.08.029</a>.</p><p>158. Shartar SE, Moore BL, Wood LM. Developing a Mass Casualty Surge Capacity Protocol for Emergency Medical Services to Use</p><p>for Patient Distribution. South MedJ. 2017 Dec;110(12):792–5.</p><p><a id="bookmark64"></a><a href="https://doi.org/10.14423/SMJ.0000000000000740">https://doi.org/10.14423/SMJ.0000000000000740</a></p><p>159. Shirm S, Liggin R, Dick R, Graham J. Prehospital preparedness for pediatric mass-casualty events. Pediatrics. 2007;120(4):e756- <a id="bookmark65"></a>761. <a href="https://doi.org/10.1542/peds.2006-2856">https://doi.org/10.1542/peds.2006-2856</a>.</p><p>160. Smith SW, Braun J, PortelliI, Malik S, Asaeda G, Lancet E, et al. Prehospital indicators for disaster preparedness and response: New York City emergency medical services in hurricane sandy. Disaster Med Public Health Prep. 2016;10(3):333–43. <a href="https://doi.org/10.1017/dmp.2015.175">https://</a> <a href="https://doi.org/10.1017/dmp.2015.175">doi.org/10.1017/dmp.2015.175</a>.</p><p>161. Stănescu A, Gordon PE, Copotoiu SM, Boeriu CM. Moving toward a universal digital era in mass casualty incidents and</p><p>disasters: emergency personnel’s perspective in Romania. Tel- emed J E Health. 2018;24(4):283–91. <a href="https://doi.org/10.1089/tmj.2017.0037">https://doi.org/10.1089/</a> <a href="https://doi.org/10.1089/tmj.2017.0037">tmj.2017.0037</a>.</p><p>162. Thiel CC, Schneider JE, Hiatt D, Durkin ME. 9–1-1 EMS pro- cess in the Loma Prieta earthquake. Prehosp Disaster Med. 1992;7(4):348–58. <a href="https://doi.org/10.1017/S1049023X00039765">https://doi.org/10.1017/S1049023X000397</a> <a href="https://doi.org/10.1017/S1049023X00039765">65</a>.</p><p>163. Timbie JW, Ringel JS, Fox DS, Waxman DA, Pillemer F, Carey C, et al. Allocation of scarce resources during mass casualty events. Evid Rep Technol Assess (Full Rep). 2012;207:1–305 (<strong>PMID:24422904</strong>).</p><p>164. Turkdogan KA, Korkut S, ArslanE, Ozyavuz MK. First response of emergency health care system and logistics support in an earthquake. Disaster Emergency MedJ. 2021;6(2):63–9. <a href="https://doi.org/10.5603/DEMJ.a2021.0013">https://</a> <a href="https://doi.org/10.5603/DEMJ.a2021.0013">doi.org/10.5603/DEMJ.a2021.0013</a>.</p><p>165. Veenema TG, Boland F, Patton D, O’Connor T, Moore Z, Sch- neider-Firestone S. Analysis of emergency health care workforce and service readiness for a mass casualty event in the Republic</p><p>of Ireland. Disaster Med Public Health Prep. 2019;13(2):243–55. <a id="bookmark90"></a><a href="https://doi.org/10.1017/dmp.2018.45">https://doi.org/10.1017/dmp.2018.45</a>.</p><p>166. Vernon A. EMS response to mass violence. What should you know to keep you and your fellow responders safe? EMS Mag.</p><p>2010 Apr;39(4):33–6. PMID:20432984</p><p>167. Yafe E, Walker BB, Amram O, Schuurman N, Randall E, Friger M, et al. Volunteer frst responders for optimizing management of mass casualty incidents. Disaster Med Public Health Prep. <a id="bookmark33"></a>2019;13(2):287–94. <a href="https://doi.org/10.1017/dmp.2018.56">https://doi.org/10.1017/dmp.2018.56</a>.</p><p>168. Khorram-Manesh A, Nordling J, Carlström E, Goniewicz K, Faccincani R, Burkle FM. A translational triage research development tool: standardizing prehospital triage decision- making systems in mass casualty incidents. Scand J Trauma Resusc Emerg Med. 2021;29(1):119. <a href="https://doi.org/10.1186/s13049-021-00932-z">https://doi.org/10.1186/</a> <a id="bookmark58"></a><a href="https://doi.org/10.1186/s13049-021-00932-z">s13049-021-00932-z</a>.</p><p>169. Lesafre X, Tourtier J-P, Violin Y, Frattini B, Rivet C, Stibbe O, et al. Remote damage control during the attacks on Paris: Lessons learned by the Paris Fire Brigade and evolutions in the</p><p>rescue system. J Trauma Acute Care Surg. 2017 Jun;82(6SSuppl 1):S107–13. <a href="https://doi.org/10.1097/TA.0000000000001438">https://doi.org/10.1097/TA.0000000000001438</a></p><p>a 灬</p>
刘世财
2024年8月28日 17:53
转发文档
收藏文档
上一篇
下一篇
手机扫码
复制链接
手机扫一扫转发分享
复制链接
Markdown文件
HTML文件
PDF文档(打印)
分享
链接
类型
密码
更新密码