搜救设备器械
02-报道称,乌克兰正在疏散受伤士兵,将他们装上大型无人机——这可能是第一次战场_1_1_translate
01-Are ‘walking blood banks’ coming to a field hospital near you?
01-“步行血库”会在你附近的野战医院出现吗_1_1_translate
02-Ukraine is evacuating wounded soldiers by loading them onto large drones, in what is likely a battlefield first, report says
03-基于北斗+装甲救护车的地面战场伤员精准搜救应用研究_1_9_translate
03-The Application Study on Accurately Search&Rescue of the Wounded on the land battlefield base on “Beidou + Armored ambulance”
05-基于战场创伤的快速加压止血给药及微系统设计_1_10_translate
09-智能传感灯在战场救援中的应用_1_2_translate
04-基于图像的外科伤口感染识别的机器学习方法_1_10_translate
05-Rapid Pressure Hemostatic Drug Delivery and Microsystem Design Based on Battlefield Trauma
08-CSAR-- 战斗搜索与救援
09-Application of the intelligent sensor lamp in battlefield rescue
04-Machine Learning Approaches for the Image-Based Identification of Surgical Wound Infections Scoping Review
10-Successful treatment of endotracheal Critical Care Open Access intubation-related lip pressure injury using a self-developed fixation device
10-自制固定装置成功治疗气管内危重重症开放通道插管相关唇压损伤_1_3_translate
06-Automated Prediction of Photographic Wound Assessment Tool in Chronic Wound Images
07-战斗搜索与救援维持和现代化努力
06-慢性伤口图像中摄影伤口评估工具的自动预测_1_10_translate
入侵者系统 (RA-1)-冲压空气战术降落伞系统
军用急救箱:历史、演变和必备物品
用于伤亡疏散的无人机系统需要做什么
-
+
首页
用于伤亡疏散的无人机系统需要做什么
**用于伤亡疏散的无人机系统需要做什么** **MichaelK.Beebe,CDRUSNR(Ret)(已故)** 以前的 美国陆军医学研究和物资司令部 远程医疗和先进技术研究 中心 ATTN:TATRC,MCMR-TT,帕切尔街1054号 德特里克堡,马里兰州21702-5012 美利坚合众国 **David Lam,MD,M.P.H.,COL美国** **(Ret)** 萨满医疗咨询有限责任公司 锯木溪大道713-B号 阿拉斯加锡特卡99835 美利坚合众国 dave.lam@us.army.mil shaman@shamanmedicalconsulting.com **加里·吉尔伯特,美国COL博士(Ret)** 美国陆军医学研究和物资司令部 远程医疗和先进技术研究中心 ATTN:TATRC,MCMR-TT,帕切尔街1054号 德特里克堡,马里兰州21702-5012 美利坚合众国 301-619-4043 301-619-7968(Fax) gary.gilbert@tatrc.org/gary.r.gilbert.civ@mail.mil ***摘要*** *场景:远程合作、战争和远程医疗* ***级别:角色I-角色II。*** *相关性:HFM-231项目目标指出:“本次研究研讨会旨在评估可能打破时间和空间束缚的新技术和新兴技术和方法……(和)需要协调的研究工作。”目前,美国军队拥有一种通过垂直起降(VTOL)无人机系统(UAS)疏散伤亡人员(美国联合部队术语中的案例)的基本能力。随着美国和北约部队开发和部署更多的垂直起降UAS系统(e.g.,U.S.Navy MQ-8C火力侦察兵垂直起降UAS),这种能力的潜力只会扩大。* *理由:空中疏散已成为伤员疏散的标准。飞机的飞行参数由飞行员控制,因此通常在伤亡的容忍范围内。然而,没有一套国际公认的可容忍的生理标准。自二战结束以来就一直在使用的直升机伤亡运输工具,可能会造成也可能不会造成额外的伤害——无论如何都没有可量化的数据。这是关于UAS UAS就业的担忧,因为一些UASs可能有能力产生超过目前大多数疏散飞机的生理压力。如果UAS用于个案任务,就有必要有一套商定的生理参数。虽然案例分析通常是一种特殊的方法,*  **伤亡疏散系统** **什么 需要 是 已完成的** *当你的任务,谨慎的是通知VTOL UAS制造商和作战指挥官特殊的医疗问题或要求,如果UAS可能携带伤亡,应考虑。* *方法、结果和观察:北约技术小组HFM-184-“使用无人机(uav)进行伤亡疏散的安全乘坐标准”,在去年完成了其工作,最终报告于2012年12月发表。该小组的目的是调查并就使用伤亡运输提出建议。小组的结论是:“……只要不增加伤亡的相对风险,在伦理上、法律上、临床上和操作上都是允许的。该小组确定了关于VTOL UAS病例生理标准的研究范围和差距。这些因素包括:伤亡稳定、伤亡移动准备和飞行环境的影响(如加速度、振动、声学、温度等)。本文描述了一项计划,利用北约成员国的协调方式,进行HFM-184小组确定的研究需求* *结论:使用VTOL UAS进行伤员疏散将很快成为现实,并最终在战场上司空见惯。通过进行本文中提出的研究,北约成员国将做好准备。* **1.0介绍。** 近年来,无人驾驶飞行器(uav)的使用在多种作用方面取得了很大的进展。国防的U.S.Department,各种战斗命令,和服务觉醒无人系统提供的革命可能性,不仅为传统的情报、监视和侦察任务,但物流交付,战斗搜索和救援,特种作战团队插入/提取,等等,很明显,后勤任务导向无人机能够携带伤亡将出现在战场上的几个国家的力量在短期到中期。许多从事研究和军事发展的人员已经在计划,在无人机交付货物后,使用这些飞机进行“回程”提取或撤离伤员。这种潜在的用法可分为两个不同的类别。使用配备医疗装备和配备人员的飞机转移伤亡人员被称为“医疗疏散”或“医疗疏散”,而在飞行中使用没有医疗护理的机会车辆则被称为“伤亡疏散”或“疏散”。虽然不是所有的北约国家都做出这种区分,但这个概念确实存在于北约学说中。这种区别是至关重要的,因为任何对这种使用的分析都必须检查无人机在这两种角色中的潜在用途。 使用飞机进行伤员疏散最初在1908年左右提出,并在1910年1912年成为可行,但这一概念引起了如此的反对,每个国家和军队都拒绝进一步考虑这一概念。自1915年以来,当对伤亡人员的空中疏散首次成为现实以来,几乎每一个能够携带病人的机身都被用于伤员疏散。在目前的军事行动中,直升机疏散时间的影响是影响伤亡生存率的一个重要因素,这是军事史上的最高水平。这一事实导致了在二战期间,U.S.Forces在阿富汗和伊拉克的伤亡人数的存活率达到了89.9%compared值的69.7%。看来,在这个角色中使用的下一个飞机类型很可能是无人机。 诸如补给和伤亡人员疏散等战斗医疗任务是危险的任务。对于“高需求/低密度”的直升机机组人员运送物资、撤离伤员和需要抢救和治疗伤员的地面医务人员来说尤其如此。医疗“急救人员”在试图营救或治疗他们的同志时往往成为伤亡。这自武装冲突开始以来一直是事实;也许还有更好的办法。部署机器人和无人系统,包括无人机,可以执行这些任务和任务将:(1)为战术指挥官提供更高的战术和作战灵活性;(2)允许执行 这些任务在载人平台不能(或不应该)的条件下运行,如“零-零”天气或受污染的环境;(3)丈夫关键的医疗“急救人员”资源;(4)作为稀缺的“高需求/低密度”医疗后送资产的力量倍增器 全球军队中无人驾驶系统的发展和部署是快速、加速和“游戏规则变化”的。美国陆军医学研究和物资司令部的远程医疗和先进技术研究中心(TATRC)正在研究和开发机器人/无人系统,用于战斗医疗任务,如关键物品补给、伤员提取、伤员疏散和受污染的人类遗骸恢复。这些系统也将适用于后勤交付、战斗搜索和救援、特种行动小组的插入/提取和民用“第一反应者”任务。无人机作为解决疏散需求的潜在用途需要为这种使用制定安全乘坐标准。北约研究和技术组织(RTO)决定调查这个问题,并在2009年建立了RTG-184,负责调查这一潜在用途的所有方面。北约于2012年12月发表了最终报告。因此,本文回顾了TATRC和美国国防部(DoD)开发新兴无人机技术进行医疗任务的初步研发工作,以及北约RTG-184小组的工作,以探索无人机携带患者安全驾驶标准的研究方向。 **2.0能力差距和需求的文档化。** 2006年颁布,公法109-364秒941(约翰华纳国防授权法案2007财年)需要优先于无人系统在新系统的收购程序,包括要求在任何这样的项目开发的载人系统认证,无人系统无法满足项目要求(5)。作为回应,U.S.military服务部门正在展望未来,并通过记录包括伤亡疏散在内的能力差距来确定无人机系统(UAS)的“占位者”。例如,海军陆战队 UAS系列系统describes“..a案例系统(其中)将缓解 *依靠载人平台从战区疏散伤亡人员。该系统将在受伤后的“黄金时间”内立即将一名受伤的海军陆战队员或士兵从受伤地点转移出来。该系统将把一到两名稳定的、受伤的海军陆战队员运送到受环境控制的大气中适当的医疗设施,以消除对元素的接触和温度的变化。”* 2008年版本的美国陆军训练和原则小册子(TRADOC)PAM525-66,“未来” 操作能力09-06,卫生服务支持”说,“未来的士兵将使用无人驾驶的车辆, *机器人和对峙设备从高风险地区恢复受伤的士兵,最少* 暴露同年出版了《美国陆军陆军航空能力概念计划》 “行动2015-2024”,TRADOC PAM 525-7-15说,“陆军航空能力将有助于 *...实现未来模块化部队维持能力要求UAS提供快速移动计划后勤支持的能力,能够精确地运送到战场位置。无人机将……也能够提取伤员”。*2012年2月,“陆军的初始能力”之后 无人系统文件”,其中指出:“部队健康保护能力差距包括 *无法安全诊断、恢复和从载人系统无法进入或无法进入的地区运送伤员。该部队缺乏在载人系统无法进入或无法进入的地区提供对峙健康服务和部队健康保护的能力”。…..这是* 2012年,陆军将“无人地面系统(UGS)作为陆军作战计划的附件” *2013年,“UGS的持续改进将集中于减少战斗医生在从战场上提取病人方面的角色,并更多地支持战斗医生对伤亡人员的治疗。””*  **伤亡疏散系统** **还需要做些什么呢** 也许这些文件促使陆军医疗部门发布了几份政策备忘录,最近的一次是2013年3月,其中规定:“AMEDDD不支持使用无人系统在没有人工陪同的情况下完成直接医疗护理任务或医疗后送。”让人呆在没有船上飞行员的车辆或飞机上的安全要求必须至少与有人驾驶的车辆或飞机一样严格和有效”,政策备忘录还指出:AMEDD认识到无人驾驶系统在未来战场上的潜力……[和]。支持[无人系统]的开发,用于陆军卫生系统的使用,但将仅限于……枯燥、肮脏、危险、常规或单调(例如,伤员提取、后勤补给等)。AMEDD缺乏足够的自主地面、空中和海上后勤和分配能力,无法为跨扩展操作环境(OE)的高度分散的单位提供响应性、有保证的VIⅢ级供应和服务。无人驾驶系统有可能填补这部分能力缺口。AMEDD缺乏提取载人系统无法进入或无法进入的伤亡的能力。大多数活跃的战斗情况会给战斗救生员或战斗医务人员在受伤点(POI)带来重大挑战(危险情况)。[无人系统]可能代表第一反应人员进行提取和/或提取战斗伤亡,并将受伤士兵(在短距离内)送到一个更安全的地点。” **3.0挑战。** 在部署可行的无人医疗补给和病人移动能力之前,必须解决一些重大的技术和非技术问题。这些包括: ·自主导航和操作 ·强大的指挥和控制 ·无人系统传感器 ·权力 ·中止伤亡评估和分诊 ·自动或极其快速的远程操作 ·无人驾驶人员伤亡处理系统的触觉反馈,这样就不会造成额外的伤害 ·闭环、便携式重症护理在途中的护理系统 ·使用无人驾驶系统运输伤亡人员的医疗标准 ·国际条约和个别国家/北约的原则和政策 **以下是对各种技术组成部分的成熟度的主观但知情的评估** 必须配备无人医疗补给和伤亡移动能力。 **组件成熟度的得分Card³*** 第13章 ● ● O 自主性 ● ● ● 原则/政策 作者的评估 这是我们的头号人物 无用度 ·Platform ·Sensors ·C² ·Payloads ·Autonomy CY18 ● ● ● ● ● ● 标准 积分 互操作性 架构 科诺普斯 医疗保健 ○ ● ● ● ● CY13 CY18 **图1:无人机案例分析概念与技术组件成熟度“评分卡”** **4.0美国国防部在医疗补给和案例分析方面的研究。** 美国陆军远程医疗和先进技术研究中心(TATRC)是美国陆军医学研究和物资司令部(MRMC)的一部分,它已经建立了一项技术发展战略,有助于实现长期的自主战斗伤亡护理愿景。TATRC正在利用美国国防部(DoD)的科学和技术资助项目,如小企业创新研究(SBIR)和科学和小企业技术转移研究项目(STTR)来实施这一战略。与各种国防部和服务组织保持密切合作,例如,机器人系统联合项目办公室,陆军机动作战实验室,海军陆战队作战实验室,海军研究办公室,空军卫生局局长的现代化办公室,和U.S.Special部队指挥外科医生。我们非常重视开发过渡路径,以利用这些研发努力的产品,并将其转移到现场系统或商业产品中。 **4.1医疗补给和疏散SBIR项目。** 其中一个专门研究使用无人驾驶飞机系统(UAS)进行医疗补给、伤员提取和案例救援任务的项目是战斗医疗UAS小企业创新研究(SBIR)项目。两家公司——蜻蜓图片公司和皮亚塞基飞机公司(及其合作伙伴)开发并演示了UAS技术,这些技术可能导致可部署的医疗补给和案例分析能力。这些系统包括UAS自主导航、飞行、着陆区域选择、起飞和降落;以及UAS/医务人员C²/互动。这些任务的基本作战概念如下(图4)。这两家公司,蜻蜓图片和皮亚塞基飞机,集成了商用现成的激光成像检测和测距系统(激光雷达),以及他们各自的无人机(UAV)飞行控制和任务管理系统。激光雷达(图1和图2)安装在每辆车的下巴下,扫描水平和垂直平面,寻找飞行路径和着陆区障碍物。将激光雷达/自动驾驶系统与数字地形地图相结合,允许UAS自动起飞、导航、过境、选择着陆点和着陆——所有这些。与卡内基梅隆大学联合进行的皮亚塞基飞机项目导致了第一个完全的 2010年,一架搭载人驾驶的人级旋翼飞机的自动飞行。蜻蜓图片项目开发了一种中型串联旋翼无人直升机,预计射程为100公里,可用有效载荷为4501bs,并能够自主飞行。  **图2:蜻蜓图片100米生病的LD-LRS激光雷达和伺服**  **图3:皮亚塞基飞机RIEGL VQ-180激光雷达** **4.2联合医疗距离支援和疏散(JMDSE)联合能力技术演示(JCTD)。** TATRC还担任了美国联合部队司令部联合医疗距离支援和疏散(JMDSE)联合能力技术演示(JCTD)的副技术经理。JMDSE的产品之一是为战斗指挥官、服务人员和个人UAS项目经理提供的联合无人伤亡疏散(JUME)概念操作文档。它描述了可能使用具有货物能力的无人驾驶飞机系统来提供医疗补给、伤员提取、伤员疏散,以及运送疑似或实际化学、生物、放射性或核污染的人员 **cm无人机集团** **不** **飞** **地区** **自动碰撞**②**排除故障** **自主的** 无飞行区域 **着陆3** **碘化物** **UAVw/正在进行中** **重症监护** **设备和** **按GO HOVE** **C²** **系统** **A.呼叫** 疏散 被一般承认的 B. UAVuse是 经核准的 C. 路线是 **自主地** **计划&** 上传 **D. UAVi** **发射** **飞** **拾取,** **恢复了** **自动地** **目标:从起点到提货点,到医疗单位** 注:类似的过程: 特种插入/提取、战斗救援或后勤 **图4.战斗医疗UAS SBIR概念作战概念** **4.3 U.S.Marine兵团有限公司的目标实验(LOE)。** U.S.Marine部队正在积极地追求空中货运UAS能力,以满足现实世界的任务需求。当然,医疗补给和个案评估是大型后勤任务的子集。2011年,海军陆战队在阿富汗地区部署了K-MAX航空货运UAS系统。为了支持这一部署工作,海军陆战队作战实验室(MCWL)此前曾进行了三次飞行演示。3.3-在2009年5月,使用了一架波音无人小鸟UAS来运送物资(水、食物)和撤离 伤员(加权人体模型),装在外侧货舱内。结果是令人鼓舞的和 *“验证了无人再补给和案例分析的概念。”案例和再补给TTPs(战术、技术和程序)需要进一步的实验来改进,(和)有潜力,但在进行进一步的实验之前需要技术改进。“MCWL建议进行整合* 这种无人驾驶能力成为他们的海基础概念。下一次飞行演示就开始了 2010年1月,在犹他州的杜格威试验场。第一次演示采用了卡曼/洛克希德·马丁公司的K-Max UAS,并成功地演示了自主和远程操作的起飞、飞行、交付吊索货物和着陆。第三次也是最后一次飞行演示是在2010年3月,再次在杜格威举行,使用的是波音A-160蜂鸟UAS。高级多任务和案例分析项目最初是作为一个国会指导的特殊利益项目资助的,现在由MCWL、空军研究实验室和TATRC支持,并由总部设在加州的先进战术公司进行。该项目旨在进行研究、开发和演示几种结合UAS和UGV的多转子概念,具有潜在的后勤操作和案例任务。   **图5:无人驾驶的小鸟在那里** **海军陆战队山地战** **培训中心**  **图6:卡曼/洛克希德公司Martin K-** **阿富汗最大无人机**  **图7:先进战术公司。“黑骑士”无人机/UGV概念设计** **5.0北约研究directions¹。** 2009年,北约研究和技术组织(现在称为北约科学组织)的人为因素和医学小组成立了RTG-184,其任务是调查UAS上疏散飞行(无论是医疗模式还是病例模式)期间患者安全的所有方面。有四个国家参与了这项工作(德国、以色列、英国和美国),并于2012年年中完成了他们的工作。该工作组的最终报告于2012年12月由北约发表,并被选为2013年北约科学成就奖 这部分论文的¹Much是直接提取或改写自12月HFM-184的最终报告的 2012. 杰出的工作将对北约的原则、政策和行动产生重大的影响。 该小组的工作包括审查这类车辆的所有技术和医疗方面,使用这种车辆的法律和道德考虑、业务和临床考虑,以及制定这种使用可能有利于伤亡的可能情况。这项研究导致了北约各机构对学说发展的建议和对这种使用的临床指南,以及一套对未来研究和开发的建议,以支持这种潜在的使用。 在与许多线路、航空和医疗军事人员的讨论后,该小组开始相信,这些飞机将在战场上出现后不久被用于伤亡行动,无论有没有理论的指导。北约和国家特种作战部队已经明确表示,他们有兴趣使用这种手段,因为没有常规的空中疏散手段或在行动上不受欢迎,几个国家的常规军事部队也是如此。无人机作为解决疏散需求的潜在用途需要为这种使用制定安全乘坐标准。RTG-184制定了一套准则,使这种方式在某些情况下安全使用。该小组的目标是调查无人机在这方面的潜在用途,并制定临床和操作标准,以便何时能够安全考虑和完成这种疏散。显然,受创伤的患者不应该被放置在常规使用7g攀爬螺旋起飞的车辆中,但需要考虑什么其他飞行和患者护理参数?RTG讨论了所有这些主题,并为进一步必要的研究提供了建议。RTG-184还研究了无人机的当前和未来技术,并确定虽然飞机技术几乎准备好用于案例角色,但对无人机在医疗角色中的使用至关重要的医疗设备和知识还不可用 一个令人惊讶的发现是,目前没有任何国际公认的容忍生理标准伤亡可用于开发无人机的飞行档案(uav)——这是特别关注,因为一些无人机有能力(如战斗机)可能创造生理压力远远超过大多数当前的疏散飞机。这些车辆用于此目的的潜在用途可能是遥远的,并将涉及运送新受伤、不稳定的伤员,这些人可能比稳定的伤员更容易受到生理压力的伤害。如果无人机用于伤亡疏散角色,有必要同意的生理,飞行,和材料参数可以被决策者来决定伤亡是否适合于通过无人机疏散,或者相反,如果一个特定的无人机适合疏散使用。无人机作为解决疏散需求的潜在用途需要为这种使用制定安全乘坐标准。该小组制定了一套指导方针,使这种药物在某些情况下可以安全使用。 该小组考虑了可能合适的无人机和当前的航空医疗平台的飞行特性,以及必须满足的航空医疗因素,以确保任何此类疏散都不会对伤员有害。一个商定的先决条件是,为此目的的无人机必须满足与目前使用的人级旋转翼飞机相同的安全标准(耐撞性、冗余飞行系统等),而且它们不能超过目前使用的空中疏散飞机所施加的生理参数(e.g.G-Loading和加速度)。 集团回顾不仅无人机的发展,但北约原则和政策解决这个问题,法律、伦理和监管问题,以及运输的临床方面,它提出了一组建议北约和RTO RTG认为将确保当使用成为现实,它将不会损害伤亡被转移。RTG建议在这方面对北约原则进行修改和补充,并建议继续进行研究,以制定真正基于证据的飞行安全建议是必要的。他们 确定了医疗设备的改进,在详细考虑未来使用无人机进行真正的医疗后送之前,可以在飞行中提供护理。在描述无人机的特性以及它们如何影响无人机作为疏散平台的使用时,该小组确定了需要额外的研究,以便使这种能力成为一种可接受的方式,并使其成为北约疏散链的一个可行的补充。 在RTG的讨论中所涉及的具体主题包括: 无人机的发展现状和飞行特性(当前、发展和预计);无人机的控制机制,包括远程驾驶车辆(RPV)和由机载编程(人工智能)控制; 无人机在伤亡人员疏散中的潜在用途——操作、伦理、理论和后勤方面 考虑 用于伤亡人员疏散的无人机的人类系统集成(HSI); 不同轴和不同医疗条件下伤亡的g耐受性和起病耐受性; 可能遇到的心理生理压力; 战内医疗支持能力;以及 无人机可以在伤员疏散中提供服务的可能情况。 RTG的结论是,只要使用无人机不增加伤亡的相对风险,无人机在伦理上、法律上、临床上都是允许的,在临床上和操作上都是允许的。集团报告说,使用这种类型的飞机医疗疏散(医疗)需要护理飞行不是技术上也不能接受的(主要是由于缺乏机上医疗设备的能力),和集团确定需要额外的研究为了使这种能力一个可接受的方式,并允许它成为一个可行的附加北约的疏散链。 不幸的是,由于超出了RTG的研究能力,无法成功地实现对需要满足的飞行参数的全套强制性限制。虽然大多数类型的飞机已成功地用于伤亡人员的转移多年,但缺乏循证数据,实际显示目前航空医疗后送做法的安全性,并可用于比较。大多数伤员在空中旅行中幸存下来,而且大多数从业者认为这种运输工具是战斗环境中最好的运输工具,但这并不能证明这种运输工具没有任何危害。例如,我们可以证明头部受伤的伤亡人员可以在直升机运输中幸存下来,但从来没有令人信服地证明这些人不会因飞行中所经历的压力而遭受额外的伤害。RTG确定并建议完成未来必要的医学研究,以确定证明这一点,尽管实际进行这项研究超出了他们的能力。 “伤亡即货物”的概念,或在非专门为运载人员而设计的飞机上运送伤亡人员,在正常的“货物设计要求”上增加了多种要求,如垃圾捆绑能力和环境噪音管理。从本质上说,成功地采用这一概念将需要增加一些具体的设计要求,以确保伤亡安全。RTG-184认为,任何用于无人机案例的飞机必须至少满足目前有人驾驶直升机的安全、环境条件和可靠性标准。为以前的无人驾驶系统设计标准的最重要的概念是,必须安装所有的预防措施和降低风险的措施,当然也不应节省任何费用,以确保空中系统在载人飞行中是安全的。 所需研究的范围可分为临床调查研究、医学技术研发和运筹学。本研究的范围适用于标准和非标准运输车辆。 临床研究研究:在对照组中评估新的医疗技术或临床方案有助于改善运输患者的预后的有效性、安全性 无用度任务可能跨越翻译连续体,包括早期试验、晚期转化为Ⅲ/IV期试验和监管批准, 转化为第一/第二阶段的卫生服务研究, 向提供者和社区传播,并被提供者、患者和公众采用。 医疗技术研究和开发:与无人机使用相关的新型设备、系统和其他医疗产品的研究、开发和操作测试,如未来的病人运输舱。·操作研究:对涉及环境和职业压力源、团队绩效、培训有效性或诊断临床健康问题的临床或操作程序和过程的建模、模拟、研究和分析。 为了提高我们的技术能力,以满足伤亡转移的要求,我们必须依靠以下方面的改进: 便携式医疗设备; 适应任何可用和适当的空气疏散运输平台上的临床能力; 患者管理和调节系统;以及 临床和操作性培训 运动环境的特征直接影响人类生理,需要对组成生理系统的患者有更多的影响。上述研究领域既适用于载人医疗运输车辆,也适用于无人机。 该RTG最初的任务之一是回顾临床知识,并根据特定的临床条件和飞行压力制定疏散建议。不幸的是,我们发现可用于这种评估的循证数据非常有限——这一主题根本从未得到充分的审查。在有航空医疗后送经验的人中,人们普遍认为,在没有严重stress(e.g.vibration的情况下,加速、缺氧)空气后送不会对患者产生任何显著影响。然而,这一点还没有以任何基于证据的方式得到充分的证明。当对航空医疗后送的临床效果进行进一步研究时,反应往往是“但我们已经知道了!”“不幸的是,这种假设是错误的。尽管美国陆军在越南时期率先进行了大规模直升机疏散,并在过去十年的冲突中疏散了数万名患者,但普遍缺乏关于旋翼疏散的物理影响的有意义的研究。事实上,在任何特定情况下,大多数伤员都能疏散(由于许多原因,他们的幸存者比没有撤离的病人高),这并不意味着他们实际上没有受到疏散的任何伤害。我们根本没有数据证明旋转翼疏散的压力不会导致病人的病情恶化,即使绝大多数病人在飞行中存活下来。全面了解环境极端条件和当前医疗运输车辆上的患者航空医疗护理的相互作用是必要的,以便为未来可能的运输车辆提供基线知识,无论是在案例模式还是医疗模式。通过在目前的空中平台上进行的疏散研究所产生的循证数据可以适用于无人机,并可以外推到无人机上。 需要循证研究的一个例子是头部和脊柱损伤患者的临床管理(运输前)和运输,这在RTG-184报告中进行了详细讨论。这个 目前的护理标准是基于二战期间的实践,这可能产生或可能不会产生最佳的医疗结果。需要一个研究项目来解决与车辆振动和反复休克有关的患者健康危害,一些研究人员认为这些危害对大量受伤士兵有意想不到的后果。为了减轻休克和振动暴露,需要确定患者对全身振动的暴露限制。目前还没有关于患者振动暴露标准的数据,这也可能是损伤患者和易受炎症过程和级联反应增加的损伤组织的另一个主要风险领域。 仅在疏散的这一方面,需要解决的问题包括: 对于头部和脊柱损伤的仰卧位患者的振动和休克暴露标准尚不清楚。 此外,目前还没有振动缓解技术作为临时解决方案; 关于适当的脊柱固定和运输的证据数据很少;和 很少的循证数据存在于颈环使用住院患者的脊柱损伤在一个高 振动环境 需要的是一项振动缓解战略,同时改进护理中已确定的证据薄弱的其他领域——即颈颈圈和固定装置。通过解决所有这三个领域,所获得的知识和技术将被应用于头部和/或脊柱损伤患者的安全临床管理和运输中。本研究的目的是防止患者在途中护理过程中现有损伤的加重,并验证护理标准,以改善患者的预后。研究计划应利用振动和患者运动主题专家(SMEs)与来自我们所有国家的军事、学术和工业合作伙伴之间的研究合作。目的是确定仰卧位患者的振动和休克暴露标准,并改善头部和脊柱损伤患者的临床管理和运输。为了让这个问题向前发展,一个只关注这个问题的RTO活动将会有很大的好处。 未来的工作应研究健康仰卧位人在模拟车辆冲击和振动下有固定和不固定的生物动力学反应。应考虑因钝性和/或爆炸撞击而导致头部和脊柱损伤的动物模型。此外,还应考虑使用在冲击和振动暴露下的尸体模型。完整的工作将产生可接受的行业标准,定义用于运送病人的机械冲击和振动暴露标准,并确定适当的护理标准。其目标是产生有意义的循证数据,可被北约组织、国家军队、文职人员和科学界用于改善伤员疏散,从而降低发病率和死亡率。这些信息对未来所有伤亡运输系统和车辆的设计都至关重要。 不同北约国家使用的医疗设备有几个测试标准,协调这些标准对于整个联盟成功的互操作性和设备使用至关重要。应该注意的是,所有的测试标准,一般都涉及一些类似的电磁和环境极端情况。测试标准详细描述了在途中病人护理途中将在军用运输车辆上使用的医疗设备的测试程序。一般来说,这些标准包括基线性能评估、实验室测试和飞行中评估。基线性能评估验证了供试品是否按照制造商的规范运行。实验室测试的两个主要目标是确定受试品可能对飞机、患者和机组人员造成的潜在安全问题,并确定受试品在操作环境中可能经历的物理或功能退化。实验室测试包括但不限于空气和地面车辆的振动、电磁干扰、气候、海拔高度、快速减压、爆炸性大气、加速/碰撞、吹尘、吹沙和吹雨。完成实验室测试后,对供试品进行“适合、形式和功能”以及EMC兼容性评估 在实际飞行中,由测试人员、医务人员和合格的医疗飞行人员,以验证实验室结果和评估人为因素。缺乏一个标准的北约系统来确保这种分析是一个关键的缺陷。因此,在国家航空医学界讨论这一问题似乎是有用的,目的是同意将这些程序标准化为联合医疗出版物。 **6.0总结** 机器人和无人系统,特别是无人航空系统,正在开发和部署的数量迅速增加。随着目前的情报、监视和侦察以及捕食者任务的解决,无人驾驶飞行器的部署数量和部署速度将继续加快。其中一个任务区域是战斗医疗补给和伤亡人员疏散。在这些任务中使用无人或无人驾驶飞机和联合无人空中/地面系统将提供额外的操作灵活性,保护关键的医疗资产和人员,并将在21世纪的作战空间中真正“改变游戏规则”。 关于需要的研究,RTG-184指出:“总之,有许多正在进行的和必要的RDT&E倡议,包括载人途中护理,以及没有途中护理的案例。从这些计划中收集到的信息对成功使用无人机作为救生平台至关重要。许多知识和互操作性方面的差距仍然需要解决。在这一群体的帮助下,利用无人机平台拯救生命的机会更接近现实。” **7.0参考书目** [1]Beebe,M.K.&Gilbert,GR..“机器人和无人系统-战斗游戏改变者 医疗任务”。北约RTO-HFM 182研讨会论文集,先进技术 *《医疗现场操作的新程序》,德国埃森,2010年4月。* [2]Gilbert,G.R.&Beebe.M.K.“美国国防部无人机器人的研究 战斗伤亡护理系统”?北约RTO-HFM 182研讨会论文集, *医疗现场操作的先进技术和新程序,埃森,德国,4月* 2010. [3]哈尼特BM,多恩CR,罗森J,汉纳福德B,布罗德里克TJ。“在极端环境下对无人驾驶的空中飞行器和移动机器人远程办公的评估”。远程医疗和电子保健。2008;14(6):539-544. [4]北约RTO技术报告RTO-TR-HFM-184。“伤亡疏散的安全乘坐标准 使用无人机”。2012年12月。 [5]北约STANAG 2872,(军用机动救护车的医疗设计要求-第3版),1989年4月3日。 [6]NATO STANAG 2040,(担架,轴承支架和附件支架-第6版),6 2004年10月。 [7]NATO STANAG 3204,(航空医疗疏散-第7版),2007年3月1日。 [8]NATO STANAG 2087,(前沿地区航空运输的医疗就业-第6版),30 2008年10月。 [9]美国陆军医疗部中心和学校立场文件:“陆军医疗部” 在操作/战术环境中使用机器人系统?。27 March2013 [10]美国陆军TRADOC ARCIC无人系统初始能力文件,2012年2月。 [11]美国陆军TRADOC小册子525-66,“部队作战能力”,2008年3月,第4-69b段(5) [12]美国陆军TRADOC小册子527-7-15,“2015-2024年美国陆军航空作战能力计划”,2008年9月。第211b(3)(e)段。,第43页。 [13]美国陆军无人地面系统附属于“2013年陆军作战计划”;2012年10月。 [14]美国国防部。“2009-2034财年无人系统集成路线图“2”版。 2009年春季。 [15]Yoo,A.,G.R.Gilbert.&T .布罗德里克,“军事机器人战斗伤亡提取与护理”,第二章,外科机器人,雅各布·罗森,编辑,施普林格科学与商业媒体有限责任公司,纽约,2011年。 **Unmanned Aircraft Systems for Casualty Evacuation- What Needs to be Done** **Michael K.Beebe,CDR USNR (Ret) (Deceased)** Formerly of U.S.Army Medical Research and Materiel Command Telemedicine and Advanced Technology Research Center ATTN:TATRC,MCMR-TT,1054 Patchel Street Fort Detrick,MD21702-5012 USA **David Lam,MD,M.P.H.,COL USA** **(Ret)** Shaman Medical Consulting,LLC 713-B Sawmill Creek Boulevard Sitka,Alaska 99835 USA dave.lam@us.army.mil shaman@shamanmedicalconsulting.com **Gary R.Gilbert,PhD,COL USA (Ret)** U.S.Army Medical Research and Materiel Command Telemedicine and Advanced Technology Research Center ATTN:TATRC,MCMR-TT,1054 Patchel Street Fort Detrick,MD 21702-5012 USA 301-619-4043 301-619-7968(Fax) gary.gilbert@tatrc.org/gary.r.gilbert.civ@mail.mil ***ABSTRACT*** ***Scenario:Re****mote Cooperation and Warfare &Telemedicine* ***Level:Role I-Role II.*** *Relevance :The HFM-231 Program Objectives states 'This Research Symposium is designed to evaluate new and emerging technologies and methods that could breakdown the tyranny oftime andspace...(and)in which coordinated research efforts are required."A rudimentary capability to evacuate a casualty (CASEVAC in U.S.joint force terminology)via a vertical takeoff and landing (VTOL)unmanned aircraft system(UAS)currently exists within United States military forces.Thepotential forthis capability will only expand as more VTOL UAS systems are developed and deployed by U.S.and NATO forces(e.g.,U.S.Navy MQ-8C Fire Scout VTOL UAS).* *Rationale: Aerial evacuation has become the standard for casualty evacuation.The aircraft flight parameters are controlled by their pilots,and thus are usually within the tolerance limits of casualties. However,there is no internationally recognized set of tolerable physiological standards for casualties or supporting data.Helicopter casualty transport,which hasbeen used since the end of WWII,may or may not cause additional injury-there isno quantifiable data either way.Thisis of concern regarding VTOL UAS employment for CASEVAC since some UASs may have the ability to create physiological stresses in excess of those of most current evacuation aircraft.If UAS are to be employed for CASEVAC missions,it is necessary to have an agreed set of physiological parameters.Although CASEVAC is usually an adhoc,*  **Unmanned Aircraft Systems for Casualty Evacuation-** **What Needs to be Done** *come-as-you-are mission,it is prudent to inform VTOL UAS manufacturers and operational commanders of specifc medical issues or requirements which should be considered if the UAS could conceivably carry a casualty.* *Methods,Results,and Observations: The NATO Technical Panel HFM-184-"Safe Ride Standards for Casualty Evacuation Using Unmanned Aerial Vehicles (UAVs),"completed its work lastyear and the final report was published in December 2012.The panel's purpose was to investigate and make recommendations regarding the use of UASs for casualty transport.The panel concluded "that the.…use of UASfor CASEVAC is ethically,legally,clinically,and operationally permissible,so long as the relative risk to the casualty is not increased.”The panel identified research scope and gaps regarding physiological standards for VTOL UAS CASEVAC.These include:casualty stabilization,casualty preparation for movement,and impact of the in-flight environment(e.g.,acceleration,vibration,acoustics,temperature,etc.).This paper describes a plan to conduct the HFM-184 panel's identified research needs,using a coordinated approach by NATO members* *Conclusions: The employment of VTOL UAS for casualty evacuation will soon be a reality and eventually commonplace in the battle-space.By conducting the research proposed in this paper,NATO memberswill be ready.* **1.0 INTRODUCTION.** The use of Unpiloted Aerial Vehicles (UAVs)has shown great progress in multiple roles in recent years.The U.S.Department of Defense,the various Combatant Commands,and the Services are awakening to the revolutionary possibilities offered by unmanned systems,not just for the traditional Intelligence, Surveillance and Reconnaissance missions,but for logistics delivery,combat search and rescue,special operations team insertion/extraction,etc.,and it appears evident that logistics mission oriented UAVs capable of carrying casualties will be present on the battlefield in the forces of several Nations within the short to medium-term.Many personnel in both research and military development are already planning for the use of these aircraft for casualty extraction or evacuation on“back-haul”,after the UAVs have delivered their cargo.This potential usage falls into two distinct categories.The use of medically-equipped and staffed aircraft to move casualties is called“Medical Evacuation”or“MEDEVAC”,while the use of vehicles of opportunity,without medical care in flight is referred to as“Casualty Evacuation”or“CASEVAC”.While not all NATO nations make this distinction,the concept does exist in NATO doctrine.The distinction is critical,since any analysis of such usage must examine the potential use of UAVs in both these roles. The use of aircraft for casualty evacuation was first proposed around 1908,and became feasible in 1910- 1912,but the concept occasioned such opposition that every nation and military force rejected further consideration of the concept.Since 1915,when air evacuation of casualties first became a reality,nearly every airframe capable of carrying a patient has been used for casualty evacuation. In current military operations,the impact of helicopter evacuation times is a significant factor when it comes to casualty survival,which is at the highest level ever seen in military history.This fact has contributed to bringing the survival rates of U.S.Forces'casualties in Afghanistan and Iraq up to 89.9%compared to 69.7%in World War II.It appears that the next aircraft type to be used in this role may well be the UAV. Combat medical missions such as resupply and casualty evacuation are dangerous missions.This is especially true for the 'high demand/low density’helicopter flight crews bringing in the supplies and evacuating the wounded and the medical personnel on the ground who have to rescue and treat the wounded. Medical “first responders”have often become casualties themselves while trying to rescue or treat their comrades.This has been true since the beginning of armed conflict;perhaps there is a better way.Fielding robotic and unmanned systems to include UAVs which can perform these missions and tasks will:(1) Provide tactical commanders with increased tactical and operational flexibility;(2)Allow the execution of these missions in conditions that manned platforms cannot (or should not)operate in,such as“zero-zero” weather or a contaminated environment;(3)Husband critical medical“first responder”resources;and (4) Act as a force multiplier of scarce“high demand/low density”medical evacuation assets The development and deployment of unmanned systems throughout the military forces of the world is rapid, accelerating and“game-changing.”The U.S.Army Medical Research and Materiel Command's Telemedicine and Advanced Technology Research Center(TATRC)is conducting research and development of robotic/unmanned systems designed for combat medical missions such as critical item resupply,casualty extraction,casualty evacuation,and contaminated human remains recovery.These systems will also be applicable to logistics delivery,combat search and rescue,special operations team insertion/extraction,and civilian“first responder”missions.This potential use of UAVs as a solution to the need for evacuation demands the creation of safe ride standards for such use.The NATO Research and Technology Organization (RTO)determined to investigate this issue and in 2009 established RTG-184 with the task of looking into all aspects of this potential usage.The final report was published by NATO in December 2012.Accordingly,this paper reviews both the initial research &development efforts of the TATRC &the US Department of Defense (DoD)in exploiting emerging UAV technologies for medical missions,and the work of theNATO RTG-184 panel to explore research directions for development of safe ride standards for UAV-carried patients. **2.0 CAPABILITY GAPS &DOCUMENTATION OF NEED.** Enacted in 2006,Public Law 109-364 SEC 941(John Warner National Defense Authorization Act for Fiscal Year 2007)requires a preference for unmanned systems in acquisition programs for new systems,including a requirement under any such program for the development of a manned system for a certification that an unmanned system is incapable of meeting program requirements (5).In response the U.S.military services are looking into the future and identifying“placeholders”for Unmanned Air Systems (UAS)by documenting capability gaps including those for casualty evacuation.For example,the Marine Corps Concept of Operations for UAS Family of Systems describes“..a CASEVAC system (which)will relieve the *reliance on manned platforms to evacuate casualties from combat zones.The systems will move a wounded Marines or soldier from the site of his injury within the“golden hour”immediately following the trauma. This system will transport one to two stabilized,wounded Marines to an appropriate medical facility in an environmentally controlled atmosphere to eliminate exposure to the elementsand variances in temperature. ”* The 2008 version of the U.S.Army Training and Doctrine Pamphlet (TRADOC)PAM 525-66,"Future Operating Capability 09-06,Health Services Support”says,“Future Soldiers will utilize umnmanned vehicles, *robotics and standoff equipment to recover wounded and injured Soldiers from high-risk areas,with minimal* exposure.”Published that same year,the “U.S.Army Capability Concept Plan for Army Aviation Operations 2015-2024”,TRADOC PAM 525-7-15 says,“Army aviation capabilities will contribute to *achieving the future Modular Force sustain capability requirements...the capability of UAS to provide rapid movement ofplanned logistics support that enables precise delivery of supplies to forward battlefield locations..... Unmanned aircraft will ....also be capable of extraction of wounded“.* These initial capabilities documentation publications were followed in February 2012 by the“Army's Initial Capabilities Document for Unmanned Systems”which stated:“Force health protection capability gaps include the *inability to safely diagnose,recover,and transport casualties with enroute care from areas where manned systems are denied entry or unavailable…..The force lacks the capability to provide standoff Health Services and Force Health Protection where manned systems are denied entry or unavailable”.This was* followed in 2012 by the Army's “Unmanned Ground Systems (UGS)Annex to the Army Campaign Plan *2013”which states,“Continued improvements in the UGS will focus on decreasing combat medic's role in patient extraction from the battlefield and more on supporting the treatment of the casualty by the combat medic. ”*  **Unmanned Aircraft Systems for Casualty Evacuation-** **What Needs to be Done** Perhaps these documents prompted the Army Medical Department to publish several policy memorandums, the latest being March 2013,which state that:“The AMEDDdoes not support the use of unmanned systems in accomplishing direct medical care tasks or medical evacuation without human accompaniment.The safety requirements for putting human beings aboard vehicles or aircraft without an on-board pilot must be at least as stringent and effective as those for piloted vehicles or aircraft”,the policy memorandum also stated that:The AMEDD recognizes the potential of [unmanned systems]on the future battlefield...[and]. supports the development of [unmanned systems]for Army Health System support use in Roles 1 through 3, but will be limited to tasks that are ...dull,dirty,dangerous,routine,or monotonous (e.g.,casualty extraction,logistical resupply,etc)...The AMEDD lacks sufficient autonomous ground,air,and maritime logistics and distribution capability to provide responsive,assured,class VIⅢ supply and services to highly dispersed units across the extended operational environment (OE).Unmanned systems can potentially fill a portion of this capability gap...The AMEDD lacks the capability to extract casualties where manned systems are denied entry or unavailable.Most active combat situations create significant challenges (dangerous situations)for combat lifesavers or combat medics at the point of injury (POI)...[unmanned systems]can potentially conduct extraction and/or retrieval of combat casualties on behalf of the first responder and deliver the wounded Soldier(within a short distance)to a safer location.” **3.0 CHALLENGES.** There are significant technical and non-technical issues that must be addressed before a viable unmanned medical resupply and patient movement capability can be fielded.These include: · Autonomous navigation and operations · Robust command and control · Unmanned systems sensors · Power ·Standoff casualty assessment and triage ·Autonomous or extremely rapid tele-operations for casualtyhandling ·Tactile feedback for unmanned casualty handling systems so additional harm isn't inflicted · Closed-loop,portable critical care enroute care systems ·Medical standards for transporting casualties onunmanned systems · InternationalTreaties and individual nation/NATO doctrine and policies **Below is a subjective,but informed,assessment of the maturity of the various technical components** necessaryto field an unmanned medical resupply and casualty movement capability. **Component Maturity 'Score Card³*** CY13 ● ● O Autonomy ● ● ● Doctrine/Policy “Authors Sutjecl Asessment hsarely Great ldea Ae Our Number One Piony UAV ·Platform ·Sensors ·C² ·Payloads ·Autonomy CY18 ● ● ● ● ● ● Standards Integration Interoperability Architecture CONOPS Medical Care ○ ● ● ● ● CY13 CY18 **Figure 1:UAV CASEVAC Concepts &Technology Component Maturity “Score Card”** **4.0 US DOD RESEARCH IN UAS MEDICAL RESUPPLY&CASEVAC.** The U.S.Army Telemedicine and Advanced Technology Research Center (TATRC),part of the U.S.Army Medical Research and Materiel Command (MRMC)has established a technology development strategy contributing to the attainment of a long term Autonomous Combat Casualty Care vision.TATRC is implementing this strategy by leveraging Department of Defense (DoD)Science and Technology funding programs such as the Small Business Innovative Research(SBIR)and Science and Small Business Technology Transfer Research Program (STTR).Close collaboration is maintained with the various DoD and Service organizations,for example-The Robotics Systems Joint Project Office,the Army Maneuver Battle Lab,The Marine Corps Warfighting Laboratory,the Office of Naval Research,the Air Force Surgeon General's office for modernization,and the U.S.Special Forces Command Surgeon.Great emphasis is placed on developing transition paths that will take the products of these R&D efforts and move them into fielded systems or commercial products. **4.1 ombat Medic UAS for Medical Resupply and Evacuation SBIR Projects**. One project looking exclusively at the employment of unmanned aircraft systems (UAS)for medical resupply,casualty extraction,and CASEVAC missions was the Combat Medic UAS Small Business Innovative Research (SBIR)Project.Two companies -Dragonfly Pictures and Piasecki Aircraft(and their partners)developed and demonstrated UAS technologies which may lead to fieldable medical resupply and CASEVAC capabilities.These included UAS autonomous navigation,flight,landing zone selection,takeoff and landing;and on UAS/medical personnel C²/interaction.A notional concept of operations for these missions is included below (figure 4).Both companies,Dragonfly Pictures and Piasecki Aircraft,integrated commercial-off-the-shelf laser imaging detection and ranging systems (LIDAR),with their respective Unmanned Air Vehicle (UAV)flight control and mission management systems.The LIDARs(figures 1& 2),mounted under the chin of the each vehicle,scan in both the horizontal and vertical planes,looking for flight path and landing zone obstacles.Coupling this LIDAR/autopilot system with digital terrain maps allows the UAS to takeoff,navigate,transit,select a landing site,and land-all autonomously.The Piasecki Aircraft project conducted in conjunction with Carnegie Mellon University resulted in the first ever totally autonomous flight of a man-rated rotary-wing aircraft with humans on board in 2010.The Dragonfly pictures project resulted in development of a medium capacity tandem rotor unmanned helicopter with projected range of 100km,usable payload of 4501bs,and capable of autonomous flight.  **Figure 2:Dragonfly Pictures 100m SICK LD-LRS LIDAR and Servo**  **Figure 3:Piasecki Aircraft RIEGL VQ-180 LIDAR** **4.2 Joint Medical Distance Support &Evacuation (JMDSE)Joint Capabilities Technology Demonstration (JCTD).** TATRC also served as the Deputy Technical Manager for the U.S.Joint Forces Command Joint Medical Distance Support and Evacuation (JMDSE)Joint Capability Technology Demonstration (JCTD).One of the JMDSE products was a Joint Unmanned Casualty Evacuation (JUME)concept ofoperations document for combatant commander,service,and individual UAS program managers.It describes the potential use of cargo capable,unmanned aircraft systems to provide medical re-supply,casualty extraction,casualty evacuation,and the transport of personnel with suspected or actual chemical,biological,radiological or nuclear contamination **CM UAV CONOPS** **No** **Fly** **Zone** **Autonomous collision** ②**obstacle avoidance** **Autonomous** No Fly Zone **landing 3** **Ioadpatienton** **UAVw/Enroute** **Critical Care** **Deviceand** **press GO HOVE** **C²** **Systems** **A.Call for** evacuation received B.UAVuse is approved C.Route is **autonomously** **planned &** uploaded **D.UAVis** **launched,** **flown** **pickups up,** **and recovered** **automatically** **GOAL:Autonomoustransit from starting point,to pick-up point,to medical uni**t NOTE:Similar Process for: SpecOps Insertion/Extraction,Combat Rescue,or Logistics **Figure 4.Combat Medic UAS SBIR Notional Concept of Operations** **4.3 U.S.Marine Corps Limited Objective Experiments (LOE).** The U.S.Marine Corps is aggressively pursuing an Air Cargo UAS capability to meet real world mission requirements.Medical resupply and CASEVAC are of course,subsets of the larger logistics mission.In 2011,the Marines deployed a K-MAX Air Cargo UAS system into the Afghanistan area of operations.To support this fielding effort the Marine Corps Warfighting Laboratory (MCWL)previously had conducted three flight demonstrations.The first-Limited Objective Experiment 3.3-Enhanced Company Operations, in May 2009,employed a Boeing Unmanned Little Bird UAS to delivery supplies(water,food)and evacuate a casualty (weighted mannequin),carried in an outboard cargo pod.The results were encouraging and *“validated both the unmanned resupply and CASEVAC concepts...CASEVAC and resupply TTPs (tactics, techniques and procedures)require further experimentation for refinement,(and)has potential,but requires technical improvement before undergoing further experimentation.”The MCWL recommended integrating* this unmanned capability into their Sea Basing Concept.The next flight demonstration took place in January 2010,at the Dugway Proving Grounds in Utah.The first demonstration employed the Kaman/Lockheed Martin K-Max UAS and successfully demonstrated autonomous and teleoperated takeoffs, flight,delivery of sling loaded cargo,and landing.The third and last flight demonstration took place in March 2010,again at Dugway,employing the Boeing A-160 Hummingbird UAS.Initially funded as a Congressionally Directed Special Interest project,the Advanced Multi-Missions and CASEVAC project is now supported by the MCWL,the Air Force Research Laboratory,and TATRC and is being conducted by Advanced Tactics Inc.based in California.The project is aimed at conducting research,development,and demonstrations of several multi-rotor combined UAS and UGV concepts with potential for both logistic operations and CASEVAC missions.   **Figure 5:Unmanned Little Bird at** **Marine Corps Mountain Warfare** **Training Centre**  **Figure 6:Kaman/Lockheed Martin K-** **Max UAV in Afghanistan**  **Figure 7:Advanced Tactics Inc.“Black Knight”UAV/UGV Conceptual Design** **5.0 NATO RESEARCH DIRECTIONS¹.** In 2009,the Human Factors and Medicine Panel of the NATO Research and Technology Organization(now called the NATO Science Organization)established RTG-184 with the task of looking into all aspects of patient safety during evacuation flights on board UAS(whether in MEDEVAC or CASEVAC modes). Four nations participated in the work (Germany,Israel,United Kingdom,and the United States),and completed their work in mid-2012.The final report of this task group was published by NATO in December 2012,and has been chosen to receive the NATO Science Achievement Award for 2013 as an ¹Much of this portion of the paper has been extracted directly or paraphrased from the Final Report of HFM-184,December 2012. outstanding piece of work which will have a significant impact upon NATO doctrine,policy,and operations in the future. The work of this group involved a review of all technical and medical aspects of this type of vehicle,the legal and ethical considerations for such use,the operational and clinical considerations,and the development of possible scenarios in which such use could be beneficial to the casualty.This study resulted in recommendations for doctrine development by various NATO bodies and clinical guidelines for such usage,as well as in a set of recommendations for future research and development to support such potential usage. After discussion with many line,aviation,and medical military personnel,the group came to believe that these aircraft will be used for casualty movement soon after their appearance on the battlefield,with or without doctrinal guidance.NATO and national Special Operations Forces have clearly indicated their interest in such use,when regular aerial evacuation means are either not available or are operationally undesirable,as have several nations'conventional military forces.This potential use of UAVs as a solution to the need for evacuation demands the creation of safe ride standards for such use.A set of guidelines to make this modality safe to use in certain circumstances was developed by RTG-184.The goal of the group was to investigate the potential use of UAVs for this purpose,and to develop clinical and operational criteria as to when such evacuation could be considered and safely accomplished.Obviously,a traumatized patient should not be placed in a vehicle which routinely uses a 7-G climbing spiral to take off,but what other flight and patient care parameters need to be taken into account?The RTG addressed all these topics,and provided recommendations for further necessary research.RTG-184 also studied the current and future technology ofUAVs,and determined thatwhile the aircraft technology is nearly ready for use in CASEVAC roles,the medical equipment and knowledge which is critical for the use of UAVs in the MEDEVAC role is not yet available One surprising discovery was that there is not currently available any internationally recognized set of tolerable physiological standards for casualties which can be used in development of flight profiles for Unmanned Aerial Vehicles (UAVs)-this is of special concern since some UAVs have the ability (like fighter aircraft)to potentially create physiological stresses far in excess of those produced by most current evacuation aircraft.Potential use of these vehicles for this purpose will likely be far-forward,and will involve the transport of freshly wounded,unstable,casualties,who may be more susceptible to physiological stresses than would be stabilized casualties.If UAVs are to be used in a casualty evacuation role,it is necessary to have an agreed set of physiological,flight,and materiel parameters which can be used by decision-makers to decide whether or not a casualty is suitable for evacuation by means of a UAV,or conversely,if a specific UAV is suitable for evacuation use.This potential use of UAVs as a solution to the need for evacuation demands the creation of safe ride standards for such use.The group developed a set of guidelines to make this modalitysafe to use in certain circumstances. The group considered the flight characteristics of potentially suitable UAVs and current aeromedical platforms,as well as aeromedical factors which must be met to ensure that any such evacuation is not detrimental to the casualty.An agreed prerequisite was that UAVs for this purpose must meet the same safety standards as currently used in man-rated rotary wing aircraft (crashworthiness,redundant flight systems,etc.),and that they must not exceed the physiological parameters (e.g.G-Loading and Acceleration) which are imposed by currently-used air evacuation aircraft. The group reviewed not only the current state of UAV development,but NATO doctrine and policy addressing this issue,legal,ethical,and regulatory issues,as well as the clinical aspects of such transport, and it presented a set of recommendations for NATO and the RTO which the RTG believes will ensure that when such use becomes reality,it will be without detriment to the casualties being moved.The RTG has recommended changes and additions to NATO doctrine in this regard,as well as proposing continued research which is necessary to develop truly evidence-based safety-of-flight recommendations.They identified improvements in medical equipment which are necessary before any detailed consideration can be given to future use of UAVs for true medical evacuation,which can offer care in flight.In describing the characteristics of UAVs and how they may affect UAV utilization as an evacuation platform,the group identified needed additional research in order to make such capability an acceptable modality and to allow it to become a viable addition to NATO's evacuation chain. Specific topics covered during the RTG discussions included: Status of Development and Flight Characteristics of UAVs(current,developmental and projected); Control Mechanisms for UAVs,including Remotely Piloted Vehicles (RPV)and controlled by onboard programming(Artificial Intelligence); The potential use of UAVs for casualty evacuation-operational,ethical,doctrinal,and logistical considerations; Human Systems Integration(HSI)for UAVs used for casualty evacuation; G-tolerance and rate-of-onset tolerance of casualties in various axes and with differing medical conditions; Psycho-Physiological Stresses potentially encountered; In-fight medical support capabilities;and Possible scenarios in which UAVs could serve in casualty evacuation. The RTG concluded that the potential use of UAVs for casualty evacuation (CASEVAC)is ethically, legally,clinically,and operationally permissible,so long as the relative risk for the casualty is not increased through the use of the UAV.The group reported that use of this type of aircraft for Medical Evacuation (MEDEVAC)which requires care in flight is neither technologically possible nor acceptable at this time (primarily due to lack of capability of in-flight medical equipment),and the group identified needed additional research in order to make such capability an acceptable modality and to allow it to become a viable additionto NATO's evacuation chain. Unfortunately,development of a full set of mandatory limits on flight parameters to be met could not be successfully accomplished,as being beyond the research capabilities of an RTG.Although most types of aircraft have been successfully used for the movement of casualties for many years,there is a dearth of evidence-based data which actually shows the safety ofcurrent aeromedical evacuation practices,and which can be used for comparison.The fact that most casualties survive their aerial journeys,and that most practitioners believe that this means of transport is the best possible transportation means in a combat environment,does not prove that such transport is not in any way detrimental.For example,we can demonstrate that casualties with head injuries can survive transport by helicopter,but it has never been convincingly demonstrated that such individuals do not suffer additional damage from the stresses experienced in flight.The RTG identified and recommended the accomplishment of future medical research necessary todefinitivelyprove this,though actually carrying out this research was beyond their capabilities. The concept of“casualty as cargo”,or the carriage of a casualty in an aircraft not specifically designed to carry people,adds multiple requirements to the normal“cargo design requirements”,such as litter tie-down capabilityand ambient noise management.Essentially,successful adoption of this concept will require the addition of some specific design requirements to ensure casualty safety.RTG-184 believes that any aircraft to be used for UAV CASEVAC must at a minimum meet safety,environmental conditioning,and reliability standardsof current manned helicopters.Paramount to designing standards for previously unmanned systems to be “manned”with precious human cargo is the concept that all precautions and risk-reducing measures must be installed,and certainly no expense should be spared to ensure that the aerial system is safe for manned flight. The scope of needed research can be categorized as clinical investigative research,medical technology research and development,and operational research.The scope of such research is applicable to both standard and non-standard transport vehicles. Clinical Investigation Research:Evaluate in controlled groups the efficacy,safety ofnovel medical technologies or clinical protocols contributing to improved outcomes of patients transported by UAV.Tasks may span the translational continuum to include early trials,late translation into Phase Ⅲ/IV trials and regulatory approval, translation into Phase I/II health services research, dissemination to providers and communities,and adoption by providers,patients and the public. Medical Technology Research and Development:Research,development,and operational testing of novel devices,systems,and other medical products related to use of UAVs,such as future patient transport pods.·Operational Research:Modelling,simulation,research,and analysis of clinical or operational procedures and processes related to environmental and occupational stressors,team performance,training effectiveness,or diagnosis of clinical health problems of concern to beneficiaries of military healthcare and expeditionary operations. To improve our technical capability to meet casualty movement requirements,we will have to depend on enhancements in: Portable medical equipment; Adaptation ofclinical capabilities for employment on any available and appropriate Air Evacuation transportation platform; Patient management and regulating systems;and Clinical and Operational Training Characteristics of the movement environment directly affect human physiology,and more understanding is needed of these effects on patients with comprised physiological systems.The above research areas are applicable to both manned medical transport vehicles and to UAVs. One of the original tasks of this RTG was to review the clinical knowledge to develop recommendations for evacuation,based on specific clinical conditions and the stresses of flight.Unfortunately,we have found that there is very limited evidence-based data available for such evaluation-This subject has simply never been examined adequately.There is a general assumption among those with experience in aeromedical evacuation that in the absence of severe stress(e.g.vibration,acceleration,hypoxia)air evacuation does not pose any significant effects on the patient.However,this has not been adequately demonstrated in any evidence-based way.When additional research on the clinical effects of aeromedical evacuation is proposed,the response is often“But we already know all that!”Unfortunately,that assumption is fallacious.Although the U.S.Army pioneered large-scale helicopter evacuation during the Vietnam era and has evacuated tens of thousands of patients in the current conflicts over the past decade,meaningful research examining the physical impact of rotary wing evacuation in the combat setting is generally lacking.The fact that most casualties with any given condition survive their evacuation(and have a higher survival rate than patients who are not evacuated, for many reasons)does not imply that they are not in fact harmed in any way by the evacuation.We simply have no data which proves that the stresses of rotary wing evacuation do not cause deterioration of patient conditions,even though the vast majority of patients survive their flights.Thorough understanding of the interactions of environmental extreme conditions and patient aeromedical care onboard current medical transport vehicles is necessary to provide baseline knowledge for possible future transport vehicles such as UAVs,whether in the CASEVAC or the MEDEVAC mode.The evidence-based data generated by studies ofevacuations carried out on current aerial platforms can be applicable to and can be extrapolated to UAVs. One example of an area which needs evidence-based research is the clinical management (pre-transport)and transport of patients with head and spine injuries,which is discussed in detail in the RTG-184 report.The current standard of care is based on WWII throughVietnam era practices which may or may not produce an optimal medical outcome.A research program is needed to address the patient health hazards associated with vehicle vibration and repeated shock which is believed by some researchers to have unintended consequences for a large population of wounded soldiers.To mitigate shock and vibration exposure,a patient's exposure limits to whole body vibration need to be defined.There is no data available on vibration exposure criteria for patients,and this too may be another major area of risk to injured patients and injured tissue susceptible to increased inflammatory processes and cascades. Problems which need to be addressed,solely with regards to this aspect of evacuation,include: Vibration and shock exposure criteria for supine patients with head and spine injuries are unknown. Furthermore,no current vibration mitigation technology,as an interim solution,is available; Very little evidenced-based data exists on proper spinal immobilization and transport;and Very little evidence-based data exists on cervical collar use inpatients with spinal injuries in a high- vibration environment. What is needed is a vibration mitigation strategy along with improvements in the additional identified areas of evidentiary weakness in care-namely,cervical collars and immobilization devices.By solving all three areas,the knowledge and techniques gained will be implemented into safe clinical management and transport of patients with head and/or spine injuries.The purpose of the research isto prevent exacerbation of existing injuries of patients during en route care and validate standard of care to improve patient outcomes.The research plan should utilize vibration and patient movement Subject-Matter Experts (SMEs)with research collaborations among the military,academic,and industry partners,from all our Nations.The goal is to identify the vibration and shock exposure criteria for supine patients and improve clinical management and transport of patients with head and spine injuries.To get this issue moving forward,an RTO Activity focused solely on this issue would be of great benefit. Future work should investigate the biodynamic response of healthy supine humans with and without immobilization under simulated vehicle shock and vibration.Animal models with head and spine injuries due to blunt and/or blast impacts should be considered.Additionally,the use of cadaver models under shock and vibration exposure should be considered.The complete work would produce acceptable industry standards defining mechanical shock and vibration exposure criteria for transporting patients as well as determining appropriate standards of care.The goal is to produce meaningful evidence-based data which can be used by NATO,the national military services,civilian,and scientific communities to improve casualty evacuation,resulting in lessened morbidity and mortality.This information is critical to the design of all future casualty transport systems and vehicles. There are several test standards for medical equipment used by various NATO Nations,and harmonizing these standards is critical for successful interoperability and equipment use throughout the Alliance.It should be noted that all test standards,in general,address somewhat similar electromagnetic and environmental extremes.Test standards describe,in detail,the test procedures for medical equipment that will be used onboard military transport vehicles during en route patient care.In general,the standards include a baseline performance assessment,laboratory tests,and an in-flight assessment.The baseline performance assessment verifies that the test article operates in accordance with the manufacturer's specifications.The two main goals of laboratory testing are to identify the potential safety concerns that the test article may pose for the aircraft,patient,and crew and to also identify the physical or functional degradation that the test article may experience within the operational environment.Laboratory tests include but are not limited to vibration for air and ground vehicles,electromagnetic interference,climatic,altitude,rapid decompression,explosive atmosphere,acceleration/crash,blowing dust,blowing sand,and blowing rain.After completion of laboratory testing,the test article is evaluated for “fit,form,and function”as well as EMC compatibility with the aircraft during actual aircraft flights by test personnel,medical personnel,and qualified medical flight crew to validate laboratory findings and assess human factors.The lack of a standard NATO system for ensuring such analyses is a critical defect.Therefore,it would appear useful to discuss this issue within the NATOAeromedical community,with theobjective of gaining agreement to standardizing these processes as an Allied Medical Publication. **6.0 SUMMARY** Robotic and unmanned systems,especially unmanned air systems,arebeing developed and fielded in rapidly increasing numbers.The numbers and rate of deployment of unmanned air vehicles will continue to accelerate as missions other than the current intelligence,surveillance and reconnaissance,and predator missions are addressed.One such mission area is combat medical resupply and casualty evacuation.Employing unmanned or pilotless aircraft and combined unmanned air/ground systems for these missions will provide additional operational flexibility,protect critical medical assets and personnel,and will be truly“game changing”in the operational space of the 21 century. As regards needed research,RTG-184 pointed out that:“In summary,there are many ongoing and necessary RDT&E initiatives for manned en route care,as well as for CASEVAC without en route care.The information gathered from those initiatives will be critical to the successful use of UAVs as life-saving platforms.Many knowledge and interoperability gaps remain that need to be addressed.With the help of this group,the opportunity to save lives with UAV platforms is closer to reality.” **7.0 BIBLIOGRAPHY** [1]Beebe,M.K.&Gilbert,GR..“Robotics and Unmanned Systems -Game Changers for Combat Medical Missions”.Proceedings ofthe NATO RTO-HFM 182 Symposium,Advanced Technologies *and New Procedures for Medical FieldOperations,Essen,Germany,April 2010.* [2]Gilbert,G.R.&Beebe.M.K.“United States Department of Defense Research in Robotics Unmanned Systems for Combat Casualty Care”?Proceedings of the NATO RTO-HFM 182 Symposium, *Advanced Technologies and New Procedures for Medical Field Operations,Essen,Germany,April* 2010. [3]Harnett BM,Doarn CR,Rosen J,Hannaford B,Broderick TJ.“Evaluation of unmanned airborne vehicles and mobile robotic telesurgery in an extreme environment”.Telemedicine and e-Health. 2008;14(6):539-544. [4]NATO RTO Technical Report RTO-TR-HFM-184.“Safe Ride Standards for Casualty Evacuation Using Unmanned Aerial Vehicles”.December 2012. [5]NATO STANAG 2872,(Medical Design Requirements for Military MotorAmbulances-3rd Edition), 3 April 1989. [6]NATO STANAG 2040,(Stretchers,Bearing Brackets and Attachment Supports -6th Edition),6 October 2004. [7]NATO STANAG 3204,(Aeromedical Evacuation-7th Edition),1 March 2007. [8]NATO STANAG 2087,(Medical Employment of Air Transport in the Forward Area-6th Edition),30 October 2008. [9]US Army Medical Department Center &School Position Paper:“Army Medical Department Employment of Robotics Systems in an Operational/Tactical Environment?.27 March2013 [10]US Army TRADOC ARCIC Initial Capabilities Document for Unmanned Systems,February 2012. [11]US Army TRADOC Pamphlet 525-66,“Force Operating Capabilities”,March 2008,para 4-69b(5) [12]US Army TRADOC Pamphlet 527-7-15,“The United States Army Capability Plan for Aviation Operations 2015-2024”,September 2008.para 211b(3)(e).,p43. [13]US Army Unmanned Ground Systems Annex to “The Army Campaign Plan 2013”;October 2012. [14]US Department of Defense.“FY2009-2034 Unmanned systems integration roadmap”2”Edition. Spring 2009. [15]Yoo,A.,G.R.Gilbert.&T.Broderick,“Military Robotic Combat Casualty Extraction &Care”, Chapter 2,in Surgical Robotics,\_Jacob Rosen,ed.,Springer Science &Business Media LLC,New York,2011.
nyp366888891
2024年12月5日 17:05
转发文档
收藏文档
上一篇
下一篇
手机扫码
复制链接
手机扫一扫转发分享
复制链接
Markdown文件
HTML文件
PDF文档(打印)
分享
链接
类型
密码
更新密码