伤员转运后送
01-从角色2向角色3医疗设施航空医疗后送期间的战斗伤亡管理
03-Collective aeromedical evacuations of SARS-CoV-2-related ARDS patients in a military tactical plane- a retrospective descriptive study
04-乌克兰火车医疗后送的特点,2022
02-Decision Support System Proposal for Medical Evacuations in Military Operations
02-军事行动中医疗后送的决策支持系统建议
05-无人驾驶飞机系统的伤员疏散需要做什么
04-Characteristics of Medical Evacuation by Train in Ukraine, 2022.
05-Unmanned Aircraft Systems for Casualty Evacuation What Needs to be Done
07-一个德语语料库,用于搜索和救援领域的语音识别
08-雷达人类呼吸数据集的应用环境辅助生活和搜索和救援行动
08-Radar human breathing dataset for applications of ambient assisted living and search and rescue operations
06-基于信息融合的海上搜索救援目标定位
07-RESCUESPEECH- A GERMAN CORPUS FOR SPEECH RECOGNITION IN SEARCH AND RESCUE DOMAIN
12-欧盟和世卫组织联手进一步加强乌克兰的医疗后送行动
09-战场伏击场景下无人潜航器最优搜索路径规划
11-麦斯卡尔医疗后送-康涅狄格州陆军警卫医务人员在大规模伤亡训练中证明了他们的能力
06-Target localization using information fusion in WSNs-based Marine search and rescue
13- 年乌克兰火车医疗后送的特点
09-Optimal search path planning of UUV in battlefeld ambush scene
10-志愿医护人员从乌克兰前线疏散受伤士兵
14-海上搜救资源配置的多目标优化方法——在南海的应用
14-A Multi-Objective Optimization Method for Maritime Search and Rescue Resource Allocation An Application to the South China Sea
15-基于YOLOv5和分层人权优先的高效无人机搜索路径规划方法
17-乌克兰医疗保健专业人员在火药行动期间的经验对增加和加强培训伙伴关系的影响
17-Ukrainian Healthcare Professionals Experiences During Operation Gunpowder Implications for Increasing and Enhancing Training Partnerships
15-An Integrated YOLOv5 and Hierarchical Human Weight-First Path Planning Approach for Efficient UAV Searching Systems
16-基于旋转变压器的YOLOv5s海上遇险目标检测方法
16-YOLOv5s maritime distress target detection method based on swin transformer
19-人工智能的使用在伤员撤离、诊断和治疗阶段在乌克兰战争中
19-THE USE OF ARTIFICIAL INTELLIGENCE AT THE STAGES OF EVACUATION, DIAGNOSIS AND TREATMENT OF WOUNDED SOLDIERS IN THE WAR IN UKRAINE
18-军事行动中医疗后送的决策支持系统建议
20-乌克兰医疗保健专业人员在火药行动中的经验对增加和加强培训伙伴关系的影响
20-Ukrainian Healthcare Professionals Experiences During Operation Gunpowder Implications for Increasing and Enhancing Training Partnerships
21-大国冲突中医疗后送的人工智能
18-Decision Support System Proposal for Medical Evacuations in Military Operations
23-伤亡运输和 疏散
24-某军用伤员疏散系统仿真分析
23-CASUALTY TRANSPORT AND EVACUATION
24-Simulation Analysis of a Military Casualty Evacuation System
25-无人驾驶飞机系统的伤员疏散需要做什么
26-Aeromedical Evacuation, the Expeditionary Medicine Learning Curve, and the Peacetime Effect.
26-航空医疗后送,远征医学学习曲线,和平时期的影响
25-Unmanned Aircraft Systems for Casualty Evacuation What Needs to be Done
28-军用战术飞机上sars - cov -2相关ARDS患者的集体航空医疗后送——一项回顾性描述性研究
27-乌克兰火车医疗后送的特点,2022
27-Characteristics of Medical Evacuation by Train in Ukraine, 2022.
28-Collective aeromedical evacuations of SARS-CoV-2-related ARDS patients in a military tactical plane- a retrospective descriptive study
03-军用战术飞机上sars - cov -2相关ARDS患者的集体航空医疗后送——一项回顾性描述性研究
30-评估局部现成疗法以减少撤离战场受伤战士的需要
31-紧急情况下重伤人员的医疗后送——俄罗斯EMERCOM的经验和发展方向
31-Medical Evacuation of Seriously Injured in Emergency Situations- Experience of EMERCOM of Russia and Directions of Development
30-Evaluation of Topical Off-the-Shelf Therapies to Reduce the Need to Evacuate Battlefield-Injured Warfighters
29-军事行动中医疗后送的决策支持系统建议
29-Decision Support System Proposal for Medical Evacuations in Military Operations
32-决策支持在搜救中的应用——系统文献综述
32-The Syrian civil war- Timeline and statistics
35-印尼国民军准备派飞机接运 1
33-eAppendix 1. Information leaflet basic medical evacuation train MSF – Version April 2022
36-战场上的医疗兵
34-Characteristics of Medical Evacuation by Train in Ukraine
22-空军加速变革以挽救生命:20年来航空医疗后送任务如何取得进展
34-2022年乌克兰火车医疗疏散的特点
33-信息传单基本医疗后送车
40-航空医疗后送
43-美军的黄金一小时能持续多久
42-陆军联手直升机、船只和人工智能进行伤员后送
47-受伤的士兵撤离
46-伤员后送的历史从马车到直升机
37-从死亡到生命之路
41-后送医院
52-印度军队伤员航空医疗后送经验
53-“地狱之旅”:受伤的乌克兰士兵撤离
45-伤病士兵的撤离链
54-热情的和资源匮乏的士兵只能靠自己
57-2022 年乌克兰火车医疗后送
51-医务人员在激烈的战斗中撤离受伤的乌克兰士兵
59-乌克兰展示医疗后送列车
61-俄罗斯士兵在乌克兰部署自制UGV进行医疗后送
60-“流动重症监护室”:与乌克兰顿巴斯战斗医务人员共24小时
50-医疗后送——保证伤员生命安全
阿拉斯加空军国民警卫队医疗后送受伤陆军伞兵
航空撤离,印度经验 抽象的
通过随机森林模拟规划方法解决军事医疗后送问题
2022 年乌克兰火车医疗后送的特点
战术战地救护教员指南 3E 伤员后送准备和要点 INSTRUCTOR GUIDE FOR TACTICAL FIELD CARE 3E PREAPRING FOR CASUALTY EVACUTION AND KEY POINTS
军事医疗疏散
北极和极端寒冷环境中的伤亡疏散:战术战斗伤亡护理中创伤性低温管理的范式转变
-外地伤员后送现场伤亡疏散
伤员后送图片
从角色2到角色3医疗设施期间战斗人员伤亡管理
关于军事行动中医疗疏散的决策支持系统建议书
在军事战术平面上对sars-cov-2相关 ARDS患者进行的集体空中医疗后送: 回顾性描述性研究
2022年乌克兰火车医疗疏散的特点
透过战争形势演变看外军营救后送阶梯 及医疗救护保障措施
东部伤兵营 英文 _Wounded_Warrior_Battalion_East
组织紧急医疗咨询和医疗后送 2015 俄文
-
+
首页
在军事战术平面上对sars-cov-2相关 ARDS患者进行的集体空中医疗后送: 回顾性描述性研究
**摘要** 在法国出现COVID-19大流行后,建立了梅洛普系统, 将军用战术航空公司的400M飞机转变为飞行重症监护 室。2020年6月至12月,对sars-cov-2相关急性呼吸窘 迫综合征患者进行了集体航空医疗后送(aero- MEDEVAC)治疗。在7个任务中,总共运送了22名患者 。所有的医疗治疗都在患者和机组人员的安全条件下 进行。在飞行过程中没有发生危及生命的情况。生物 危害控制是根据法国指南实施,并防止船员污染。由 于严格的选择标准和持续的飞行中的医疗护理,这些 病人的安全运输是可能的。据我们所知,这是第一次 描述使用战术军用飞机的这类患者的集体航空医疗飞 机。我们在这里描述了病人的特点和飞行所面临的挑 战。 **介绍** 梅洛普是古希腊神话中阿特拉斯和普里奥 尼的女儿。她是在神话中变成鸽子的七个 昴宿星团之一。因此,她的名字是一个适 **个人视图** **在军事战术平面上对sars-cov-2相关** **ARDS患者进行的集体空中医疗后送:** **回顾性描述性研究** 蒂博马丁内斯,1K西蒙,2L Lely,3,4C Nguyen Dac,5M Lefevre,6P Aloird,6J Leschiera,7S Strehaiano,8O Nespoulous,9M Boutonnet,1雷 诺10 **关键信息** →MEROPE系统将A400M战术军用飞机 转变为“飞行ICU ”。 →集体的mero-medeVACs已采用 MEROPE系统进行检测,以转移在机 械通气下出现sars-cov-2相关急性 呼吸窘迫综合征的患者。 →7次航班运送了22名患者;他们 都是根据严格的安全选择标准 选择的。 → 由于在飞行期间的持续的医疗护理 和这个最初的梅洛普系统的组织, 这些危重患者的转移是安全的。 →生物危害通过应用国家指南和建立 特定的丙酮系统以避免SARS-CoV-2 机组人员污染。 当的选择,来识别系统创建的转换 1麻醉学联合会,重症监护室,烧伤和手术室 , 珀西军事训练医院,重症监护室,克拉马 特,法国 2法国伊斯特斯第160军事医疗单位 3法国,兰斯特,第190个军事医疗单位 4法国军事卫生服务处, 巴黎,法国 5法国,第132军事医疗单位 6法国,布里西,第100个军事医疗单位 7法国第50个军事医疗单位,TOUL CEDEX8第111 个军事医疗单位, 图尔,法国9法国武装力量生 物医学研究所航空医学研究专业知识培训部, 法国,法国 10麻醉科联合会,重症监护室,军事训练医院 开始,圣曼德,法国 致蒂博·马丁内斯医生,麻醉学联合会,重症监护室,烧 伤和手术室,珀西军事训练医院,92141克拉马特,法国; thibault.martinez@hotmail.fr 军用战术地图集空客A400M军用运输机进 入一个飞行重症监护室。该地图集飞机自 2013年起已在法国部署。它被用于法国军 队在所有战区的后勤支援。 新冠肺炎大流行挑战了法国所有的医疗 保健系统,从2020年初开始,然后在全年 都成为慢性疾病。1为涌入的病人服务, 采取了许多举措(即建立重症监护病床、 建立军事重症监护医院和区域间医疗后送 , 以避免当地饱和)。2–4这些战略依 赖于法国军队和法国军事卫生服务部门。 5 6 为了进行这些医疗后送(MEDEVACs),人 们使用了各种交通工具:救护车、火车、直 升机和飞机——其中一些属于法国军队。这 场危机的挑战之一是管理大量的急性呼吸窘 迫综合征(ARDS)患者7 需要重症监护和危 及生命的预后,使这些MEDEVACs成为高危患 者转移给患者。先前的一项研究描述了在大 流行背景下首次使用军用集体航空医疗运输 病人,使用空客A330多用途坦克运输机,配 备了复苏舱(MoRPHEE;高伸长疏散患者的 重症监护模块)系统。6 8 为了允许使用图集A400M的集体MEDEvac , 恢复模块的操作 (梅罗普;重症护理模块)系统创建于 2020年。与莫菲系统一样,它将飞机改 造成一个飞行的重症监护室,允许在重 症监护下运送四名仰卧的病人。 自2020 年6月以来,MEROPE已多次被部署,以对 sars-cov-2相关ARDS患者进行航空医疗 运输。这项研究描述了这些飞行的医疗 组织和结果。 **梅洛普系统** 梅洛普系统将一个多用途的战术运输和后 勤飞机变成了一个“飞行的ICU ”。它由 四个重症监护模块组成,每个模块允许 管理一个重症监护病房的病人。它符合 国际航空安全规则。该系统允许对病人 进行中到远距离的运输,即使是在战区 的战术条件下。 每个模块(图1) 由一个运输呼吸机 (Monnal T60,液化空气医疗系统,法国安 东尼)、连续监测系统(尸体3,考弗林, 德国)和药物输液泵(四个电动注射泵,法 国卡比;一个阿拉瑞斯GW泵,护理融合,瑞 士)组成。此外,还有一个超声波系统(Ed ge II,Sonosite,博塞尔,华盛顿,美国 ) 和一个血液分析系统(epoc,西门子,苏 黎世,瑞士)。 梅洛普系统的医疗人员包括一名重症监 护医生,两名有航空医疗服务的急诊医 生 英国医学杂志医学健康:2021年7月9日,以10.1136/bmjmilitary-2021-001876的形式首次出版。20客人于23年11月29日从<http://militaryhealth.bmj.com/>下载。受版权保护。 马丁内斯T等。英国医学杂志医学健康版2023年10月第169卷第5期 443  英国医学杂志医学健康:2021年7月9日,以10.1136/bmjmilitary-2021-001876的形式首次出版。20客人于23年11月29日从<http://militaryhealth.bmj.com/>下载。受版权保护。 所有患者在飞行过程中都按照给上游重 症监护病房的医疗小组下达的指示服用了 镇静剂和药物瘫痪。7例(32%)患者出现 血流动力学失败(6例患者服用去甲肾上 腺素,1例患者服用多巴酚丁胺)。飞行 中的FiO2(60%(50-70) )高于飞行 前的FiO2 (50% (45 – 50)), p<0.001.相比之下,呼气末正压和潮气 量保持稳定(p=分别为0.46和0.98)。在 飞行过程中,对所有患者至少进行了一次 动脉血气分析,对其中12名(55%)患者 (在飞行开始和结束时)进行了两次动脉 血气分析。图2显示了PaO的演变过程 2/FiO2比PaO2/FiO2该比率在飞行过程 中略有下降,在飞行前一天和飞行结束之 间有显著差异 图1梅洛系统的模块。照片来源:法国陆军部。 专科,两名麻醉师护士,两名普通护士 和两名飞行护士。所有机组人员都接受 了航空-中东-vac的训练。 **病人的特征** **参与者选择** 所有转运患者如无排除标准,均纳入研究。 排除标准为年龄在18岁以下或分类为受保护 的成人。患者 其 中位年龄为69 岁(63- 73 岁 )。 Charlson共病评分中位数为4(2-4)。主 要的合并症是高血压和肥胖。中位身体 质量指数(BMI )为29( 26-33 ) 。所 有患者均接受机械通气治疗。患者的飞行 前特征详见表1。 是在飞行前一天由负责他们的医院医生挑 选出来的。只选择中度ARDS的稳定患者, 以减轻气医疗变引起的失代偿的风险。选 择标准为:确诊的SARS-CoV-2感染, PaO2/FiO2>120,体重<130 kg,飞行前 24小时无俯卧位,儿茶酚胺输注速率适中 (<0.5µg/kg/min)。所有接受机械通气 的患者都必须服用镇静剂和药物麻痹。船 上没有无创机械通气设备。最好是,患者 仅有呼吸衰竭或轻微的相关器官衰竭。 **临床资料** 从2020年6月到12月,在7次空中直升机任务 中,22名患者被梅洛普系统撤离。 所有患者在发生SARS-CoV-2感染后均符 合ARDS的标准,其中1例患者为重度(5% ) , 13例患者为中度(59%),8例患者为 轻度(36%)。被运送的患者中,91%为男 性, (p=0.024).这一结果可能受到在飞行中 接受两次动脉血检的患者是最危重的患者 这一事实的影响。所有PaO2/FiO2该比率 在飞行后的第二天恢复到基线水平。 在飞行期间,有12名患者需要进行医 疗干预,以管理15个医疗事件(占这些 事件的100%)。其中三人发生了两次医 疗事件。这些都不是 表1患者在飞行前一天的特征 **特点** **所有患者(n=22)** 年龄,中位数(IQR) 69 (63 – **男性,n(%)** 73) 20 **BMI,kg/m**2,中位数(IQR) 29 (26 – (91) **共病** 33) **查尔森分数,中位数(IQR)** 4 (2 **糖尿病,n(%)** –4) 5 **高血压,n(%)** (23) 13 **肥胖(BMI** **>30)** **,n(%)** (59) 10 **SOFA评分,** **中位数(IQR)** 3 (3 (45) **SOFA呼吸评分,** **中位数(IQR)3(3-3)** –6) **SOFA心血管评分,中位数(IQR)0(0-0)** **自症状开始后的天数,中位数(IQR)17(13-19)** **ICU入院后的天数,** **中位数(IQR)8(6-16)** **机械有创通气后的天数,** **中位数(IQR)6(4-11)** **飞行前治疗** **潮气量,mL/kg,** **中位数(IQR)** .26 (6.0 – 呼气末正压,mm Hg,中位数(IQR) 6 4) 10 (8 – **FiO**2,%,中位数(IQR) 50 (45 – 12) **神经肌肉阻滞,n(%)** 50) 13 **皮质类固醇治疗,n(%)** (60) 23 **肺炎,n(%)** (100) 9 **易位,n(%)** (41) 17 **俯卧位治疗次数,** **中位数(IQR)1(1-3)** (74) BMI、体重指数;FiO2, O2吸气分数;重症监护室;呼气末正压,呼气末正压;SOFA,顺序器官 衰竭评估评分。 **个人视图** **图2** **PaO**2/FiO2从飞行前一天到飞行后的 一天的比率演变。*p<0.05.采用克鲁斯 卡鲁-沃利斯检验进行多重比较。 被认为是严重的或危及生命的。有8例呼 吸事件(7例),包括2例呼吸性酸中毒和 6例饱和度下降(周围毛细血管血氧饱和 度<92%);2例血流动力学事件(2例低血 压);和5例其他事件(5例):3例高血 糖>10 mmol/L,1例低温<36 °C和1例低钾 血症<3.5 mmol/L。中位数 耗氧量为341(290-444)升/小时。 表2显示了飞行期间的患者特征及其随后 几天的治疗结果。2名患者(9%)在进入下 游重症监护病房后的飞行当天需要俯卧位。 所有患者在飞行后的第二天仍在机械通气状 态下并存活。一周后,12例患者仍在机械通 气状态下,1例患者死亡。 **飞行特征** **飞行特征** 表3显示了飞行特征。所有七次飞行都是在 法国国家领土上进行的,即使前三次飞行是 在海外领土之间进行的。 **感染预防与控制** 由于与感染SARS-COV-2的患者的运输有关的 生物风险,整个船员按照法国指南中定义的 程序并经武装部队研究所验证的程序佩戴了 个人防护装备(PPE) 。9 所有医务人员都接受了这些程序方面的培 训。从病人进入飞机货舱的那一刻起,它就 被认为是完全受到污染的,即使是在卸货之 后,直到返航后进行了去污程序。因此, PPE得以维护 表2:工艺路线特征和短期结果 **特点** **所有患者(n=22)** **FiO**2,%,中位数(IQR) 60 (50 –70) 呼气末正压,mm Hg,中位数(IQR) 10 (8 – 12) 潮体积,mL/kg,中值(IQR)6.2(6.0-6.4) **PaO**2**/FiO**2**在飞行中** 132 (116 – 197) **SOFA评分,** **中位数(IQR)** 3 (3 –6) **SOFA呼吸评分,** **中位数(IQR)3(3-3)** **SOFA心血管评分,中位数(IQR)0(0-3)** **需要医疗干预的事件,n(%)12(55)** **危及生命的事件,n(%)0** **呼吸事件,n(%)** 7 (32) **心血管事件,n(%)** 2 (9) **其他事件,n(%)** 5 (23) **O**2**消耗量,每小时L,** **中位数(IQR)341(290-444)** **短期结果** **第1天的机械通气,n(%)22(100)** **第1天存活,n(%)** 22 (100) **第7天的机械通气,n(%)** **12(55)** **在第7天存活,n(%)** 21 (95) FiO2, O2吸气分数;呼气末正压,呼气末正压;SOFA,顺序器官衰竭评估评分。 不间断地佩戴个人防护装备数小时会导致 脱水,并对船员疲劳有显著影响(表3) 。*这就是为什么,在任务特别长的时候,* *一个名为“警报”的系统(空气和个人的* *集合;为船员生理调节的光和集体住所)* *被实施,在货舱创建一个绿色区域,允许* *船员进行生理调节(进食、饮水等)。*该 系统包括一个带有乙烯基墙的临时房间和 一个气闸。它的空气被过滤和更新,以创 建一个安全的区域。防护设备可以拆下扔 进气闸,然后新设备穿进货舱。在使用警 报系统时,为了协助和确保医务人员的安 全,作为生物危害专家的专门军事工作人 员参与了这次任务,并确保遵守卫生规则 , 以减少SARS-CoV-2传播的风险。在这些 任务期间,没有一名机组人员感染COVID- 19。 **讨论** 法国军队使用MEROPE系统,在有创机械通 气下对ARDS患者进行了集体呼吸。这是第 一次描述了军事战术A400M飞机的集体撤 离。患者特征与文献报道的需要有创机械 通气的COVID-19患者的特征一致。10 1 1 尽管一些作者提出了COVID19患者医疗 转移的建议12 – 15而且很少有研究描述 了转移程序。6 16在我们的研究中,患 者的特征与之前的少数医疗后送研究中报 道的特征一致。6 17 18与战争伤 亡病例中发生的ARDS相比,我们的患者的 运输时间晚于肺部疾病的发病,并有更严 重的呼吸系统疾病(中位PaO2/FiO2在对 战争伤亡病人进行的空中医疗救护期间, 大约有240人)。他们年龄更大,并有更多 的共病。1 9 飞行期间的疾病严重程度达到了符合 我们的选择标准的患者的预期水平。 尽管交通运输被认为是高风险的,20 21我们认为在这些运输过程中没有病人 受到危险。这是可能的,因为严格的病人 选择 马丁内斯T等。英国医学杂志《医学健康》2023年10月第169卷第5 445期 英国医学杂志医学健康:2021年7月9日,以10.1136/bmjmilitary-2021-001876的形式首次出版。20客人于23年11月29日从<http://militaryhealth.bmj.com/>下载。受版权保护。 **个人视图** 表3飞行特点 **航班号** **出发到达** **长度** **(km** **飞行持续时间** **(最小)** **持续时间** **medicalisation** **分** **个人防护装备磨** **损时间(hh:mm** **患者编号为丙酮** 1卡宴尖角酒1610 150 219 9:00 2是的 2卡宴法兰西堡1438 125 193 9:00 2是的 3卡宴尖角酒1610 150 213 9:00 2是的 4阿维尼翁布雷斯特869 100 233 6:30 4号 5里昂南特516 70 205 6:30 4号 6里昂维拉库布雷390 60 225 3:15 4号 7里昂布雷斯特763 90 215 6:15 4号 所有的飞行都是在法国领土上进行的。 个人防护装备,个人防护装备。 以及在飞行中提供的重症医疗服务。ARDS 患者在医院外运输期间存在关键时期,特 别是呼吸功能:在飞行前的道路运输期间 , 在飞行本身期间和到医院的道路运输期 间。医疗团队之间的转移,随着位置的改 变、呼吸机断开和通气模式的改变,都会 导致肺不张。2例患者在飞行后,因呼吸 衰竭恶化,在同一天需要俯卧位。这两例 患者的肥胖程度最为严重(BMI分别为40和 39 kg/m2),使他们面临更大的肺衰竭风 险,尽管由于患者数量有限,该风险无法 进行统计分析。然而,我们的与体重相关 的选择标准似乎是飞行安全的一个关键因 素。此外,对患者的系统镇静和神经肌肉 阻滞可预防患者-呼吸机异步或患者躁动 等并发症。这对飞行安全也至关重要。 这种军用战术飞机的另一个特点是,货 舱需要非医疗机组人员(装载员);他们 还暴露在运送SARS-CoV-2患者时固有的生 物风险中。他们接受了与医务人员相同的 个人防护装备,并在飞行前接受了使用训 练。他们的安全和卫生规则的应用是医疗 主任或生物安全团队的责任,如果该团队 在场。这些措施的实施是有效的,因为在 7次任务中没有观察到向机组人员传播 COVID-19的病例。 **结论** 这是对sars-cov2相关ARDS患者所经历的 集体空中医疗直升机的首次描述 登在一架战术军用飞机上。由于严格的 选择标准和持续的飞行中的医疗护理,这 些病人的安全运输是可能的。这项研究记 录了使用梅洛普系统进行的集体医疗后送 工作,并说明了法国军队对该大流行病的 国家管理的承诺。在分享我们的经验时, 我们希望促进其他医疗小组组织类似的任 务。 **贡献者TM、MB和LR构思了该研究并设计了该试验。**TM监督 了试验的进行和数据的收集。TM、KS、LL、CND、ML、PA、 JL、SS、ON、MB和LR进行患者招募并对数据进行管理。TM对 研究设计提供了统计建议,并对数据进行了分析;TM起草了 手稿,KS、LL、CND、ML、PA、JL、SS、ON、MB和LR对其修 订做出了重大贡献。TM对整个论文负责。 作者没有宣布来自任何公共、商业或非营利部门的资助机 构对这项研究的具体资助。 **免责声明:这里所表达的意见是作者的私人意见,不应** **被视为官方或反映法国军事卫生局的意见。** **相互竞争的利益,没有人宣布。不需要患者同意** **发表。**伦理批准地方伦理委员会(麻醉和恢复研究 委员会):编号IRB 00010254。 未委托的同行评审和同行评审;外部同行评审。 根据《英国医学杂志》的网站条款和条件,在新冠肺炎19大 流行期间或在《英国医学杂志》另行决定之前,本文可免费 供个人使用。您可以为任何合法的、非商业性的目的(包括 文本和数据挖掘)而下载和打印该文章,但必须保留所有的 版权声明和商标。 ©作者(s)(或其雇主(s))2023。没有商业再利用。请参阅 权限和权限。出版的英国医学杂志。 2021年6月7日接受 2021年7月9日首次在线发布 英国医学杂志Mil健康2023;169:443-447。 doi:10.1136/bmjmilitary-2021-001876 **ORCID** **iD** 蒂博·马丁内斯<http://orcid.org/0000-0001-5477-> 6021 **参考文献** 1.信息:冠状病毒Covid19 |搜索。 fr[互联网],2020。可用: https://www。 gouvernement.fr/info- coronavirus 2 Lefrant J-Y,费舍尔M-O,Potier H,等。全 国性的 法国COVID疫情期间对重症监护病床需求的医 疗保健应对。Anaesth癌症护理疼痛医学2020 ; 39:709-15。 3扣网M,Turc J,Dupre H-L等。“莫菲 ”对 抗COVID19。Anaesth癌症护理疼痛医学 2020;39:363-4。 4沙漠研究M,Mathais Q,Luft A等。在法国东 部构想和部署了一家拥有30张床位的野战军 事重症监护医院 2020年新冠肺炎大流行。Anaesth癌症护 理疼痛医学2020;39:361-2。 5帕斯奎尔P,Luft A,吉拉德J,等。我们如何 抗击COVID-19?在法国抗击新冠肺炎大流行 的战争中采取的军事医疗行动。英国医学杂 志医学健康2021;167:269-74。 6 Turc J,Dupre H-L,Beaussac M,等。欧洲 COVID-19危重症患者的集体航空医疗运输: 回顾性研究。Anaesth治疗护理2021;40: 100786。 7 ARDS定义特别工作组,拉涅利虚拟机,鲁本 菲尔德GD,等。急性呼吸窘迫综合征:柏林 的定义。JAMA2012;307:2526-33。 8M,巡回JP,兰桑,等。集体空中医疗后 送:法国的工具。AirMedJ2012;31: 124-8。 达蒙,布瓦德玛,莫拉维克。法国病人复苏管 理指南 在2020年SARS Cov-2爆发期间。可用: [https://www.srlf.org/wp-](https://www.srlf.org/wp-content/uploads/2020/03/) content/uploads/2020/03/重组-数据专家- COVID1910-火星-2020。pdf 10恢复合作小组,Horby P,Lim WS,等。地 塞米松在Covid19住院患者中的应用。N, 英国医学杂志,2021年;384:693-704。 11名COVID-ICU小组代表REVA网络和COVID-ICU 调查人员。4244名COVID-19危重症成人的临 床特征和第90天的结果:一项前瞻性队列研 究。重症监护室2021;47:60-73。 12岁,阿兰J。COVID-19大流行期间的航空 医疗后送:对病人运输的实际考虑。 CJEM 2020 ;22:584 –6. 英国医学杂志医学健康:2021年7月9日,以10.1136/bmjmilitary-2021-001876的形式首次出版。20客人于23年11月29日从<http://militaryhealth.bmj.com/>下载。受版权保护。 引用马丁内斯T,Simon K,Lely L,等人。 英国医学杂志Mil健康2023;169:443-447。 2021年4月27日收到 **个人视图** 13马丁DT。Covid-19大流行期间固定翼患者的 空运。空气MedJ2020;39:149-53岁。 14马佐利CA,甘贝里尼L,Lupi C,等。COVID- 19危重症患者的院间转移:来自艾米利亚-罗 马涅经验的初步考虑。AirMedJ2020;39: 423-6。doi:10.1016/j.amj.2020.05.014 15卫生部。*2020年COVID-19肺炎患者的航空医* *学检索信息。* 16 Dagens AB,麦金农J,Simpson R,等。跨 大西洋航空医疗遣返多例COVID-19 病人:一种军民混合的模式。英国医学杂志 Mil健康2023;169:e93-6。 阮C17号,蒙克里奥尔A,简维尔F。两栖攻击舰上的 COVID-19患者严重撤离:可行性和安全性。一个案 例系列。英国医学杂志医学健康2023; 169: 443-7。 18科尼利厄斯B,科尼利厄斯A,Crisafi L,等 。2019年冠状病毒病患者的大规模空气医疗 遣返。AirMedJ2020;39:251-6。 19施密特J,Boutonnet M,Goutorbe P,等。正 向环境中的急性呼吸窘迫综合征。法国军队 战争伤亡人员中急性呼吸窘迫综合征病例的 回顾性分析。第2020年;89年:S207-12年 。 20斯里通K,信杜S,万尼坤N,等。危重患者在设施间转移期 间临床恶化的发生率和危险因素;队列研究。ArchAcad Emerg Med 2020;8 :e65. 21斯特劳奇U,伯格曼斯DCJJ,文肯斯B,等。医 院间重症监护运输后的短期预后和死亡率: 一项观察性队列研究368例连续运输的前瞻性 队列研究。英国医学杂志开放2015;5: e006801。 英国医学杂志医学健康:2021年7月9日,以10.1136/bmjmilitary-2021-001876的形式首次出版。20客人于23年11月29日从<http://militaryhealth.bmj.com/>下载。受版权保护。 马丁内斯T等。英国医学杂志《医学健康》2023年10月第169卷第5 447期 **Personal view** **Collective aeromedical evacuations of SARS-CoV-2-related ARDS patients in a military tactical plane: a retrospective descriptive study** Thibault [Martinez ](http://orcid.org/0000-0001-5477-6021) ,1 K Simon,2 L Lely,3,4 C Nguyen Dac,5 M Lefevre,6 PAloird,6 J Leschiera,7 S Strehaiano,8 O Nespoulous,9 M Boutonnet,1 L Raynaud10 **ABSTRACT** After the appearance of the COVID-19 pandemic in France, MEROPE system was created to trans- form the military tactical ATLAS A400Maircraft into a flying intensive care unit. Collective aeromedical evacuations (aero-MEDEVAC) of patients suffering from SARS-CoV-2-related acute respiratory distress syndrome was performed from June to December 2020. A total of 22 patients were transported during seven missions. All aero-MEDEVAC was performed in safe conditions for patients and crew. No life-threatening conditions occurred during flight. Biohazard controls were applied according to French guidelines and prevented crew contam- ination. Thanks to rigorous selection criteria and continuous in-flight medical care, the safe trans- portation of these patients was possible. To the best of our knowledge, this is the first description of collective aero-MEDEVAC of these kinds of patients using a tactical military aircraft. We here describe the patient’s characteristics and the flight’s challenges. **INTRODUCTION** Merope was the daughter of Atlas and Pleione in ancient Greek mythology. She was one of the seven Pleiades who were transformed into doves in the myth. Thus, **Key messages** → MEROPE system transforms the A400M tactical military aircraft into a ‘flying ICU’. → Collective aero-MEDEVACs have been performed with the MEROPE system to transfer patients presenting SARS-CoV-2-related acute respiratory distress syndrome under mechanical ventilation. → Twenty-two patients have been transported during seven flights; they were all selected according to rigorous selection criteria for their safety. → Thanks to the continuous medical care during flight and the organisation of this original MEROPE system, transfer of these critical patients was performed safely. → Biohazard was controlled with the application of national guidelines and the creation of the specific ALCYONE system to avoid SARS-CoV-2 crew contamination. her name was an appropriate choice to identify the system created to transform 1Federation of Anesthesiology, Intensive Care Unit, Burns and Operating Theater, Percy Military Training Hospital, Clamart, France 2 160th Military Medical Unit, Istres, France 3 190th Military Medical Unit, Lanester, France 4French Military Health Service, Paris, France 5 132th Military Medical Unit,Evreux, France 6 100th Military Medical Unit, Bricy, France 750th Military Medical Unit, TOUL CEDEX, France 8 111th Military Medical Unit, Tours, France 9Aeromedical Research Expertise Training Department, French Armed Forces Biomedical Research Institute, Bretigny sur Orge, France, France 10Federation of anesthesiology, intensive care unit, Military Training Hospital Begin, Saint Mande, Île-de- France, France **Correspondence to** Dr Thibault Martinez, Federation of Anesthesiology, Intensive Care Unit, Burns and Operating Theater, Percy Military Training Hospital, 92141 Clamart, France; thibault.martinez@hotmail.fr the military tactical ATLAS Airbus A400M military transport aircraft into a flying intensive care unit. The ATLAS aircraft has been deployed in France since 2013. It is used for logistical support by the French Army in all theatres of operation. The COVID-19 pandemic challenged all of France’s healthcare systems, acutely from the beginning of 2020 and then on a chronic basis throughout the year.[1](#bookmark1) Numerous initiatives were launched to serve the influx of patients (ie, intensive care bed creation, creation of military intensive care hospitals and inter-regional medical evacuations to avoid local saturation).[2–4](#bookmark2) These strate- gies relied on, among others, the French Army and the French Military Health Service.[5 6](#bookmark3) To carry out these medical evacuations (MEDEVACs), a variety of means of transport were used: ambulances, trains, helicopters and planes—some of which belonged to the French Army. One of the challenges of this crisis has been to manage a significant number of patients with acute respiratory distress syndrome (ARDS)[7](#bookmark4) requiring intensive care and with life-threatening prognoses, making these MEDEVACs high-risk patient transfers for the patients. A previous study described the first use of military collective aeromedical transportation of patients in a pandemic context, using an Airbus A330 Multi-Role Tanker Trans- port plane equipped with the *Module de Réanimation pour Patient à Haute Elon- gation d’Evacuation* (MoRPHEE; Inten- sive care module for high elongation evacuation patients) system.[6 8](#bookmark5) To allow the use of the ATLAS A400M for collective MEDEVACs, the *ModulE de Réanimation pour les OPErations* (MEROPE; Critical care module for operations) system was created in 2020. Like the MoRPHEE system, it trans- forms the aircraft into a flying intensive care unit, allowing the transport of four supine patients under intensive care. Since June 2020, MEROPE has been deployed several times to perform aero- medical transportations of patients with SARS-COV-2-related ARDS. This study describes the medical organisation and results of these flights. **MEROPE SYSTEM** The MEROPE system turns a multipur- pose tactical transport and logistics aircraft into a ‘*flying ICU*’. It is composed of four intensive care modules, each allowing the management of one intensive care unit patient. It complies with international aviation security rules. This system allows the transportation of patients for medium to long distances, even in tactical condi- tions in combat zones. Each module ([Figure 1](#bookmark6)) is made up of a transport ventilator (Monnal T60, Air Liquide Medical System, Antony, France), continuous monitoring system (Corpuls 3, Corpuls, Kaufering, Germany) and drug infusion pumps (four electric syringe pumps, InjectomatAgilia, Fresenius Kabi, Sevres, France; one Alaris GW pump, CareFusion, Rolle, Switzerland). In addition, there is an ultrasound system (Edge II, Sonosite, Bothell, Washington, USA) and a blood analysis system (epoc, Siemens, Zurich, Switzerland). The medical crew for the MEROPE system included one intensivist, two emergency physicians with aeromedical [BMJ](http://jramc.bmj.com) Martinez T, *et al*. *BMJ Mil Health* October 2023 Vol 169 No 5 443 BMJ Mil Health: first published as 10.1136/bmjmilitary-2021-001876 on 9 July 2021. Down loaded from [http://militaryhealth bmj com/](http://militaryhealth.bmj.com/) on November 29, 2023 by guest Protected by copyright **Personal view** BMJ Mil Health: first published as 10.1136/bmjmilitary-2021-001876 on 9 July 2021. Down loaded from [http://militaryhealth bmj com/](http://militaryhealth.bmj.com/) on November 29, 2023 by guest Protected by copyright were selected the day before the flight by the hospital physicians who were in charge of them. Only stabilised patients with moderate ARDS severity were selected to mitigate the risk of decompensation due to aero-MEDEVAC. The selection criteria were as follows: confirmed SARS-CoV-2 infection, PaO2/FiO2 >120, bodyweight <130 kg, no prone position in the 24 hours prior to the flight and moderate infusion rate of catecholamines (<0.5 µg/ kg/min). All patients under mechanical ventilation had to be sedated and phar- macologically paralysed. Non-invasive mechanical ventilation was not available onboard. Preferably, patients had either respiratory failure only or mild associated organ failures. **Clinical data** From June to December 2020, 22 patients were evacuated by the MEROPE system during seven aero-MEDEVAC missions. All patients met the criteria for ARDS following a SARS-CoV-2 infection that was qualified as severe for one patient (5%), moderate for 13 patients (59%) and mild for eight patients (36%). The patients transported were 91% male,  **Figure 1** Modules of the MEROPE system. Photo credits: French Army Ministry. specialty, two nurse anaesthetists, two general nurses and two flight nurses. All crew were trained for aero-MEDEVACs. **PATIENT’S CHARACTERISTICS** **Participants selection** All transported patients were included if they had no exclusion criteria. The exclu- sion criteria were age under 18 years or classification as a protected adult. Patients with a median age of 69 years (63–73). The median Charlson comorbidity score was 4 (2–4). The main comorbid- ities were hypertension and obesity. The median body mass index (BMI) was 29 (26–33). All patients were under mechan- ical ventilation. The patients’ pre-flight characteristics are detailed in [Table 1](#bookmark7). All patients were sedated and pharma- cologically paralysed during the flight following the instructions given to the medical teams in the upstream intensive care units. Seven (32%) patients had haemodynamic failure (six patients on norepinephrine and one patient on dobu- tamine). In-flight FiO2 (60% (50–70)) was higher than pre-flight FiO2 (50% (45–50)), p<0.001. In contrast, posi- tive end-expiratory pressure and tidal volume remained stable (p=0.46 and 0.98, respectively). Arterial blood gases were analysed during the flight at least once for all patients and twice for 12 (55%) of them (at the beginning and end of the flight). [Figure 2](#bookmark8) shows the evolu- tion of the PaO2/FiO2 ratios. PaO2/FiO2 ratios decreased slightly during the flight, with a significant difference between the day before and the end of the flight (p=0.024). This result may have been affected by the fact that patients who received two arterial blood tests during the flight were the most critical patients. All PaO2/FiO2 ratios returned to baseline the day after the flight. During the flights, 12 patients required medical interventions to manage 15 medical events (constituting 100% of the events). Three of them presented with two medical events. None of these were **Table 1** Patient’s characteristics the day before the flight **Characteristics** **All patients (n=22)** **Age,** median (IQR) 69 (63–73) **Male gender,** n (%) 20 (91) **BMI,** kg/m2, median (IQR) 29 (26–33) **Comorbidities** **Charlson score,** median (IQR) 4 (2–4) **Diabetes,** n (%) 5 (23) **Hypertension,** n (%) 13 (59) **Obesity (BMI >30),** n (%) 10 (45) **SOFA score,** median (IQR) 3 (3–6) **SOFA Respiratory score,** median (IQR) 3 (3–3) **SOFA Cardiovascular score,** median (IQR) 0 (0–0) **Days since symptoms beginning,** median (IQR) 17 (13–19) **Days since ICU admission,** median (IQR) 8 (6–16) **Days since mechanical invasive ventilation,** median (IQR) 6 (4–11) **Treatments before flight** **Tidal volume,** mL/kg, median (IQR) 6.2 (6.0–6.4) **PEEP,** mm Hg, median (IQR) 10 (8–12) **FiO**2**,** %, median (IQR) 50 (45–50) **Neuromuscular blockade,** n (%) 13 (60) **Corticosteroid treatment,** n (%) 23 (100) **Pneumonia,** n (%) 9 (41) **Prone positioning,** n (%) 17 (74) **Number of prone position sessions,** median (IQR) 1 (1–3) BMI, body mass index; FiO2, O2 inspired fraction; ICU, intensive care unit; PEEP, positive end-expiratory pressure; SOFA, Sequential Organ Failure Assessment score. 444 Martinez T, *et al*. *BMJ Mil Health* October 2023 Vol 169 No 5 **Personal view**  **Figure 2** PaO2/FiO2 ratio evolution from the day before to the day after the flight. *p<0.05. Multiple comparisons were performed using the Kruskal-Wallis test. considered severe or life-threatening. There were eight respiratory events (seven patients), including two cases of respiratory acidosis and six of desatura- tion (peripheral capillary oxygen satura- tion <92%) resolved with recruitment manoeuvres; two haemodynamic events (hypotension in two patients); and five other events (in five patients): three cases of hyperglycaemia >10 mmol/L, one case of hypothermia <36°C and one case of hypokalaemia <3.5 mmol/L. Median oxygen consumption was 341 (290–444) L/hour. [Table 2](#bookmark9) shows patient characteristics during the flights and their outcomes on the following days. Two patients (9%) required prone positioning on the day of the flight after being admitted to the downstream intensive care unit. All patients were still under mechanical ventilation and alive on the day after the flight. One week later, 12 patients were still under mechanical ventilation, and one patient had died. **FLIGHT’S CHARACTERISTICS** **Flight’s characteristics** [Table 3](#bookmark10) presents the flight characteristics. All seven flights were performed in the French national territory even if the first three flights took place between overseas territories. **Infection prevention and control** Because of the biological risk linked to the transportation of patients infected with SARS-COV-2, the entire crew wore personal protective equipment (PPE) according to the procedures defined in the French guidelines and validated by the Armed Forces Research Institute.[9](#bookmark11) All members of the medical crew were trained in these procedures. From the moment the patients entered the aircraft cargo bay, it was considered fully contaminated, even after unloading the patients, until a decontamination procedure took place after the return flight. PPE was therefore maintained **Table 2** En route characteristics and short-term outcomes **Characteristics All patients (n=22)** **FiO**2**,** %, median (IQR) 60 (50–70) **PEEP,** mm Hg, median (IQR) 10 (8–12) **Tidal volume,** mL/kg, median (IQR) 6.2 (6.0–6.4) **PaO**2**/FiO**2 **during flight** 132 (116–197) **SOFA score,** median (IQR) 3 (3–6) **SOFA Respiratory score,** median (IQR) 3 (3–3) **SOFA Cardiovascular score,** median (IQR) 0 (0–3) **Event requiring medical intervention,** n (%) 12 (55) **Life-threatening event,** n (%) 0 **Respiratory event,** n (%) 7 (32) **Cardiovascular event,** n (%) 2 (9) **Other event,** n (%) 5 (23) **O**2 **consumption,** L/hour, median (IQR) 341 (290–444) **Short-term outcomes** **Mechanical ventilation on day 1,** n (%) 22 (100) **Alive on day 1,** n (%) 22 (100) **Mechanical ventilation on day 7,** n (%) 12 (55) **Alive on day 7,** n (%) 21 (95) FiO2, O2 inspired fraction; PEEP, positive end-expiratory pressure; SOFA, Sequential Organ Failure Assessment score. without interruption. Wearing PPE for several hours caused dehydration and had a significant impact on crew fatigue ([Table 3](#bookmark10)). That is why, when the mission was particularly long, a system called ALCYONE (*Abri Léger et Collectif de reconditionnement phYsiOlogique du personNEl*; Light and collective shelter for the physiological reconditioning of crew) was implemented to create a green zone in the cargo bay, allowing the crew to carry out physiological reconditioning (eating, drinking, etc). This system consists of a temporary room with vinyl walls and an airlock. Its air is filtered and renewed to create a safe zone. Protective equipment can be removed and thrown into the airlock, and then new equip- ment is worn into the cargo bay. To assist and secure the medical crew when the ALCYONE system was used, specialised military staff who were biohazard experts participated in the mission and ensured compliance with hygiene rules to reduce the risk of transmission of SARS-CoV-2. None of the crew members contracted COVID-19 during these missions. **DISCUSSION** The French Army, with the MEROPE system, safely performed collective aero- MEDEVAC of patients with ARDS under invasive mechanical ventilation. This is the first description of collective evacua- tion in a military tactical A400M aircraft. Patient characteristics were consistent with those reported in the literature for patients with COVID-19 requiring inva- sive mechanical ventilation.[10 11](#bookmark12) Although a few authors have proposed recommen- dations for the medicalised transfer of patients with COVID-19[12–15](#bookmark13) and few studies have described the transfer proce- dures.[6 16](#bookmark5) In our study, the characteris- tics of the patients were consistent with those reported in the handful of previous studies of medical evacuations.[6 17 18](#bookmark5) Compared with ARDS developed in war casualties, our patients were transported later than the onset of lung disease and with a more severe respiratory condition (the median PaO2/FiO2 was about 240 during aero-MEDEVAC of war casual- ties’ patients). They were older and had more comorbidities.[19](#bookmark14) Illness severity during the flights was at a level that would be expected for patients meeting our selection criteria. Even though transportation is recognised as high risk,[20 21](#bookmark15) we believe that no patients were endangered during these transports. This was possible because of the strict selection of patients Martinez T, *et al*. *BMJ Mil Health* October 2023 Vol 169 No 5 445 BMJ Mil Health: first published as 10.1136/bmjmilitary-2021-001876 on 9 July 2021. Down loaded from [http://militaryhealth bmj com/](http://militaryhealth.bmj.com/) on November 29, 2023 by guest Protected by copyright **Personal view** **Table 3** Flight’s characteristics **Flight** **number Departure Arrival** **Length (km)** **Flight duration (min)** **Duration of** **medicalisation (min)** **PPE wearing time (hh:mm)** **Patients number** **ALCYONE** 1 Cayenne Pointe-à-Pitre 1610 150 219 9:00 2 Yes 2 Cayenne Fort de France 1438 125 193 9:00 2 Yes 3 Cayenne Pointe-à-Pitre 1610 150 213 9:00 2 Yes 4 Avignon Brest 869 100 233 6:30 4 No 5 Lyon Nantes 516 70 205 6:30 4 No 6 Lyon Villacoublay 390 60 225 3:15 4 No 7 Lyon Brest 763 90 215 6:15 4 No All flights took place on French territory. PPE,personal protective equipments. and the intensive medical care available in flight. There are critical times, particu- larly for respiratory function, for patients with ARDS during extra-hospital trans- portation: during the road transport before the flight, during the flight itself and during road transport to the hospital. Transfers between medical teams, with changes in position, ventilator discon- nections and changes in ventilatory modes, all contribute to atelectasis. Two patients required prone positioning after the flight, on the same day, because of worsening respiratory failure. These two patients had the most advanced obesity (BMI 40 and 39 kg/m2), putting them at greater risk for lung collapse, although the risk cannot be statistically analysed due to the limited number of patients. Nevertheless, our weight-related selec- tion criterion appears to have been a key factor in the safety of flights. Addition- ally, systematic sedation and neuromus- cular blockade of the patients prevented complications such as patient–ventilator asynchrony or patient agitation. This was also critical for flight safety. Another feature of this military tactical aircraft is that non-medical aircrew (loadmasters) are required in the cargo bay; they are also exposed to the biolog- ical risk inherent in transporting patients with SARS-CoV-2. They were given the same PPE as the medical crew and received training in its use before the flight. Their safety and the application of hygiene rules were the responsibility of the medical director or the biosecurity team if the team was present. The appli- cation of these measures was effective as no case of COVID-19 transmission to the crew was observed during the seven missions. **CONCLUSION** This is the first description of the collec- tive aero-MEDEVAC of SARS-CoV- 2-related ARDS patients experience onboard a tactical military aircraft. Thanks to rigorous selection criteria and continuous in-flight medical care, the safe transportation of these patients was possible. This study documents collective medical evacuations using the MEROPE system and illustrates the commitment of the French Army to the national manage- ment of the pandemic. In sharing our experience, we hope to facilitate the organisation of similar missions by other medical teams. **Contributors** TM, MB and LR conceived the study and designed the trial. TM supervised the conduct of the trial and data collection. TM, KS, LL, CND, ML, PA,JL, SS, ON, MB and LR undertook recruitment of patients and managed the data. TM provided statistical advice on study design and analysed the data; TM drafted the manuscript, and KS, LL, CND, ML, PA,JL, SS, ON, MB and LR contributed substantially to its revision. TM takes responsibility for the paper as a whole. **Funding** The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors. **Disclaimer** The opinions expressed in here are the private views of the authors and are not to be considered as official or as reflecting the views of the French Military Health Service. **Competing interests** None declared. **Patient consent for publication** Not required. **Ethics approval** Local ethics committee (Comité d’Ethique dela Recherche en Anesthésie et Réanimation): number IRB 00010254. **Provenance and peer review** Not commissioned; externally peer reviewed. This article is made freely available for personal use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trademarks are retained. © Author(s) (or their employer(s)) 2023. No commercial re-use. See rights and permissions. Published by BMJ. [](http://crossmark.crossref.org/dialog/?doi=10.1136/bmjmilitary-2021-001876&domain=pdf&date_stamp=2023-09-20) **To cite** Martinez T, Simon K,Lely L, *et al*. *BMJ Mil Health* 2023;**169**:443–447. Received 27 April 2021 Accepted 7 June 2021 Published Online First 9 July 2021 *BMJ Mil Health* 2023;**169**:443–447. doi:10.1136/bmjmilitary-2021-001876 **ORCID iD** Thibault Martinez [http://orcid.org/0000-0001-5477-](http://orcid.org/0000-0001-5477-6021) [6021](http://orcid.org/0000-0001-5477-6021) **REFERENCES** 1 Info Coronavirus Covid-19 | Gouvernement. fr [Internet], 2020. Available: [https://www.](https://www.gouvernement.fr/info-coronavirus) [gouvernement.fr/info-coronavirus](https://www.gouvernement.fr/info-coronavirus) 2 Lefrant J-Y, Fischer M-O, Potier H, *et al*. A national healthcare response to intensive care bed requirements during the COVID-19 outbreak in France. [*Anaesth Crit Care Pain Med*](http://dx.doi.org/10.1016/j.accpm.2020.09.007)2020;39:709–15. 3 Boutonnet M, Turc J, Dupre H-L, *et al*. “MoRPHEE” fighting COVID-19.[*Anaesth Crit Care Pain Med*](http://dx.doi.org/10.1016/j.accpm.2020.05.002)2020;39:363–4. 4 Danguy des Déserts M, Mathais Q, Luft A, *et al*. Conception and deployment of a 30-bed field military intensive care hospital in eastern France during the 2020 COVID-19 pandemic.[*Anaesth Crit Care Pain*](http://dx.doi.org/10.1016/j.accpm.2020.04.008)[*Med*](http://dx.doi.org/10.1016/j.accpm.2020.04.008)2020;39:361–2. 5 Pasquier P, Luft A, Gillard J, *et al*. How do we fight COVID-19? military medical actions in the war against the COVID-19 pandemic in France. [*BMJ Mil Health*](http://dx.doi.org/10.1136/bmjmilitary-2020-001569) 2021;167:269–74. 6 Turc J, Dupré H-L, Beaussac M, *et al*. Collective aeromedical transport of COVID-19 critically ill patients in Europe: a retrospective study. [*Anaesth Crit*](http://dx.doi.org/10.1016/j.accpm.2020.11.004)[*Care Pain Med*](http://dx.doi.org/10.1016/j.accpm.2020.11.004)2021;40:100786. 7 ARDS Definition Task Force, RanieriVM, Rubenfeld GD, *et al*. Acute respiratory distress syndrome: the Berlin definition. [*JAMA*](http://dx.doi.org/10.1001/jama.2012.5669)2012;307:2526–33. 8 Borne M, Tourtier JP, Ramsang S, *et al*. Collective air medical evacuation: the French tool. [*Air Med J*](http://dx.doi.org/10.1016/j.amj.2011.09.002)2012;31:124–8. 9 Darmon M, Bouadma L, Morawiec E. French guidelines for theresuscitative management of patients during SARS Cov-2 outbreak, 2020. Available: [https://www.srlf.org/wp-content/uploads/2020/03/](https://www.srlf.org/wp-content/uploads/2020/03/Recommandations-dexperts-COVID-19-10-Mars-2020.pdf) [Recommandations-dexperts-COVID-19-10-Mars-2020.](https://www.srlf.org/wp-content/uploads/2020/03/Recommandations-dexperts-COVID-19-10-Mars-2020.pdf) [pdf](https://www.srlf.org/wp-content/uploads/2020/03/Recommandations-dexperts-COVID-19-10-Mars-2020.pdf) 10 RECOVERY Collaborative Group, Horby P, Lim WS, *et al*. Dexamethasone in hospitalized patients with Covid-19. [*N Engl J Med*](http://dx.doi.org/10.1056/NEJMoa2021436)2021;384:693–704. 11 COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. [*Intensive Care*](http://dx.doi.org/10.1007/s00134-020-06294-x)[*Med*](http://dx.doi.org/10.1007/s00134-020-06294-x)2021;47:60–73. 12 Lemay F, VanderschurenA, Alain J. Aeromedical evacuations during the COVID-19 pandemic: practical considerations for patient transport. [*CJEM*](http://dx.doi.org/10.1017/cem.2020.434)2020;22:584–6. 446 Martinez T, *et al*. *BMJ Mil Health* October 2023 Vol 169 No 5 BMJ Mil Health: first published as 10.1136/bmjmilitary-2021-001876 on 9 July 2021. Down loaded from [http://militaryhealth bmj com/](http://militaryhealth.bmj.com/) on November 29, 2023 by guest Protected by copyright **Personal view** 13 Martin DT. Fixed wing patient air transport during the Covid-19 pandemic.[*Air Med J*](http://dx.doi.org/10.1016/j.amj.2020.04.001)2020;39:149–53. 14 Mazzoli CA,Gamberini L, Lupi C, *et al*. Interhospital transfer of critically ill COVID-19 patients: preliminary considerations from the Emilia-Romagna experience. [*Air*](http://dx.doi.org/10.1016/j.amj.2020.05.014)[*Med J*](http://dx.doi.org/10.1016/j.amj.2020.05.014)2020;39:423–6. doi:10.1016/j.amj.2020.05.014 15 Department of Health. *Information for aeromedical retrieval of patients with COVID-19 COVID-19*, 2020. 16 Dagens AB, Mckinnon J, Simpson R, *et al*. Trans-Atlantic Aeromedical repatriation of multiple COVID-19 patients: a hybrid military-civilian model. [*BMJ Mil Health*](http://dx.doi.org/10.1136/bmjmilitary-2020-001565)2023;169:e93–6. 17 Nguyen C, Montcriol A, Janvier F. Critical COVID-19 patient evacuation on an amphibious assault SHIP: feasibility and safety.A case series. [*BMJ Mil Health*](http://dx.doi.org/10.1136/bmjmilitary-2020-001520)2023;169:443–7. 18 Cornelius B, Cornelius A, Crisafi L, *et al*. Mass air medical repatriation of coronavirus disease 2019 patients. [*Air*](http://dx.doi.org/10.1016/j.amj.2020.04.005)[*Med J*](http://dx.doi.org/10.1016/j.amj.2020.04.005)2020;39:251–6. 19 Schmitt J, Boutonnet M, Goutorbe P, *et al*. Acute respiratory distress syndrome in the forward environment. retrospective analysis of acute respiratory distress syndrome cases among French army war casualties. [*J Trauma Acute Care Surg*](http://dx.doi.org/10.1097/TA.0000000000002633)2020;89:S207–12. 20 Srithong K, Sindhu S, Wanitkun N, *et al*. Incidence and risk factors of clinical deterioration during Inter-Facility transfer of critically ill patients; a cohort study. [*Arch Acad*](http://www.ncbi.nlm.nih.gov/pubmed/33134961)[*Emerg Med*](http://www.ncbi.nlm.nih.gov/pubmed/33134961)2020;8:e65. 21 Strauch U, Bergmans DCJJ, Winkens B, *et al*. Short- term outcomes and mortality after interhospital intensive care transportation: an observational prospective cohort study of 368 consecutive transports with a mobile intensive care unit. [*BMJ Open*](http://dx.doi.org/10.1136/bmjopen-2014-006801) 2015;5:e006801. BMJ Mil Health: first published as 10.1136/bmjmilitary-2021-001876 on 9 July 2021. Down loaded from [http://militaryhealth bmj com/](http://militaryhealth.bmj.com/) on November 29, 2023 by guest Protected by copyright Martinez T, *et al*. *BMJ Mil Health* October 2023 Vol 169 No 5 447
nyp366888891
2024年12月5日 17:22
转发文档
收藏文档
上一篇
下一篇
手机扫码
复制链接
手机扫一扫转发分享
复制链接
Markdown文件
HTML文件
PDF文档(打印)
分享
链接
类型
密码
更新密码