伤员转运后送
01-从角色2向角色3医疗设施航空医疗后送期间的战斗伤亡管理
03-Collective aeromedical evacuations of SARS-CoV-2-related ARDS patients in a military tactical plane- a retrospective descriptive study
04-乌克兰火车医疗后送的特点,2022
02-Decision Support System Proposal for Medical Evacuations in Military Operations
02-军事行动中医疗后送的决策支持系统建议
05-无人驾驶飞机系统的伤员疏散需要做什么
04-Characteristics of Medical Evacuation by Train in Ukraine, 2022.
05-Unmanned Aircraft Systems for Casualty Evacuation What Needs to be Done
07-一个德语语料库,用于搜索和救援领域的语音识别
08-雷达人类呼吸数据集的应用环境辅助生活和搜索和救援行动
08-Radar human breathing dataset for applications of ambient assisted living and search and rescue operations
06-基于信息融合的海上搜索救援目标定位
07-RESCUESPEECH- A GERMAN CORPUS FOR SPEECH RECOGNITION IN SEARCH AND RESCUE DOMAIN
12-欧盟和世卫组织联手进一步加强乌克兰的医疗后送行动
09-战场伏击场景下无人潜航器最优搜索路径规划
11-麦斯卡尔医疗后送-康涅狄格州陆军警卫医务人员在大规模伤亡训练中证明了他们的能力
06-Target localization using information fusion in WSNs-based Marine search and rescue
13- 年乌克兰火车医疗后送的特点
09-Optimal search path planning of UUV in battlefeld ambush scene
10-志愿医护人员从乌克兰前线疏散受伤士兵
14-海上搜救资源配置的多目标优化方法——在南海的应用
14-A Multi-Objective Optimization Method for Maritime Search and Rescue Resource Allocation An Application to the South China Sea
15-基于YOLOv5和分层人权优先的高效无人机搜索路径规划方法
17-乌克兰医疗保健专业人员在火药行动期间的经验对增加和加强培训伙伴关系的影响
17-Ukrainian Healthcare Professionals Experiences During Operation Gunpowder Implications for Increasing and Enhancing Training Partnerships
15-An Integrated YOLOv5 and Hierarchical Human Weight-First Path Planning Approach for Efficient UAV Searching Systems
16-基于旋转变压器的YOLOv5s海上遇险目标检测方法
16-YOLOv5s maritime distress target detection method based on swin transformer
19-人工智能的使用在伤员撤离、诊断和治疗阶段在乌克兰战争中
19-THE USE OF ARTIFICIAL INTELLIGENCE AT THE STAGES OF EVACUATION, DIAGNOSIS AND TREATMENT OF WOUNDED SOLDIERS IN THE WAR IN UKRAINE
18-军事行动中医疗后送的决策支持系统建议
20-乌克兰医疗保健专业人员在火药行动中的经验对增加和加强培训伙伴关系的影响
20-Ukrainian Healthcare Professionals Experiences During Operation Gunpowder Implications for Increasing and Enhancing Training Partnerships
21-大国冲突中医疗后送的人工智能
18-Decision Support System Proposal for Medical Evacuations in Military Operations
23-伤亡运输和 疏散
24-某军用伤员疏散系统仿真分析
23-CASUALTY TRANSPORT AND EVACUATION
24-Simulation Analysis of a Military Casualty Evacuation System
25-无人驾驶飞机系统的伤员疏散需要做什么
26-Aeromedical Evacuation, the Expeditionary Medicine Learning Curve, and the Peacetime Effect.
26-航空医疗后送,远征医学学习曲线,和平时期的影响
25-Unmanned Aircraft Systems for Casualty Evacuation What Needs to be Done
28-军用战术飞机上sars - cov -2相关ARDS患者的集体航空医疗后送——一项回顾性描述性研究
27-乌克兰火车医疗后送的特点,2022
27-Characteristics of Medical Evacuation by Train in Ukraine, 2022.
28-Collective aeromedical evacuations of SARS-CoV-2-related ARDS patients in a military tactical plane- a retrospective descriptive study
03-军用战术飞机上sars - cov -2相关ARDS患者的集体航空医疗后送——一项回顾性描述性研究
30-评估局部现成疗法以减少撤离战场受伤战士的需要
31-紧急情况下重伤人员的医疗后送——俄罗斯EMERCOM的经验和发展方向
31-Medical Evacuation of Seriously Injured in Emergency Situations- Experience of EMERCOM of Russia and Directions of Development
30-Evaluation of Topical Off-the-Shelf Therapies to Reduce the Need to Evacuate Battlefield-Injured Warfighters
29-军事行动中医疗后送的决策支持系统建议
29-Decision Support System Proposal for Medical Evacuations in Military Operations
32-决策支持在搜救中的应用——系统文献综述
32-The Syrian civil war- Timeline and statistics
35-印尼国民军准备派飞机接运 1
33-eAppendix 1. Information leaflet basic medical evacuation train MSF – Version April 2022
36-战场上的医疗兵
34-Characteristics of Medical Evacuation by Train in Ukraine
22-空军加速变革以挽救生命:20年来航空医疗后送任务如何取得进展
34-2022年乌克兰火车医疗疏散的特点
33-信息传单基本医疗后送车
40-航空医疗后送
43-美军的黄金一小时能持续多久
42-陆军联手直升机、船只和人工智能进行伤员后送
47-受伤的士兵撤离
46-伤员后送的历史从马车到直升机
37-从死亡到生命之路
41-后送医院
52-印度军队伤员航空医疗后送经验
53-“地狱之旅”:受伤的乌克兰士兵撤离
45-伤病士兵的撤离链
54-热情的和资源匮乏的士兵只能靠自己
57-2022 年乌克兰火车医疗后送
51-医务人员在激烈的战斗中撤离受伤的乌克兰士兵
59-乌克兰展示医疗后送列车
61-俄罗斯士兵在乌克兰部署自制UGV进行医疗后送
60-“流动重症监护室”:与乌克兰顿巴斯战斗医务人员共24小时
50-医疗后送——保证伤员生命安全
阿拉斯加空军国民警卫队医疗后送受伤陆军伞兵
航空撤离,印度经验 抽象的
通过随机森林模拟规划方法解决军事医疗后送问题
2022 年乌克兰火车医疗后送的特点
战术战地救护教员指南 3E 伤员后送准备和要点 INSTRUCTOR GUIDE FOR TACTICAL FIELD CARE 3E PREAPRING FOR CASUALTY EVACUTION AND KEY POINTS
军事医疗疏散
北极和极端寒冷环境中的伤亡疏散:战术战斗伤亡护理中创伤性低温管理的范式转变
-外地伤员后送现场伤亡疏散
伤员后送图片
从角色2到角色3医疗设施期间战斗人员伤亡管理
关于军事行动中医疗疏散的决策支持系统建议书
在军事战术平面上对sars-cov-2相关 ARDS患者进行的集体空中医疗后送: 回顾性描述性研究
2022年乌克兰火车医疗疏散的特点
透过战争形势演变看外军营救后送阶梯 及医疗救护保障措施
东部伤兵营 英文 _Wounded_Warrior_Battalion_East
组织紧急医疗咨询和医疗后送 2015 俄文
-
+
首页
06-Target localization using information fusion in WSNs-based Marine search and rescue
<p><a href="https://doi.org/10.1016/j.aej.2023.01.028">Alexandria Engineering Journal (2023) 68, 227–238</a></p><p><img src="/media/202408//1724838576.4254231.png" /></p><table><tr><td><p><img src="/media/202408//1724838576.690357.png" /></p></td></tr></table><p>Alexandria University</p><p>Alexandria Engineering Journal</p><p>www.elsevier.com/locate/aej <a href="http://www.sciencedirect.com/science/journal/11100168">www.sciencedirect.com</a></p><p><img src="/media/202408//1724838576.804097.jpeg" /></p><img src="/media/202408//1724838576.857533.png" /><p>HOSTED BY</p><p><img src="/media/202408//1724838576.8625731.jpeg" /></p><p>ORIGINAL ARTICLE</p><p>Target localization using information fusion in WSNs-based Marine search and rescue</p><img src="/media/202408//1724838576.8692422.png" /><p><img src="/media/202408//1724838576.888427.png" /></p><img src="/media/202408//1724838576.895883.png" /><p><a href="http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2023.01.028&domain=pdf">check for updates</a></p><p>Xiaojun Mei <a href="#bookmark1">a</a>,b,c, Dezhi Han <a href="#bookmark1">a</a>,b,c, Yanzhen Chen <a href="#bookmark1">d</a>, Huafeng Wu <a href="#bookmark1">e</a>,<a href="#bookmark1">*</a>, Teng Ma <a href="#bookmark1">f</a></p><p>a College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China b Shanghai Ship and Shipping Research Institute Co., Ltd., Shanghai 200135, China</p><p>c National Engineering Research Center of Ship & Shipping Control System, Shanghai 200135, China dMarine Design & Research Institute of China, Shanghai 200011, China</p><p>e Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China</p><p>f Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin 150001, China</p><p>Received 9 February 2022; revised 27 October 2022; accepted 13 January 2023 Available online 20 January 2023</p><table><tr><td></td><td><p><img src="/media/202408//1724838576.919612.jpeg" /></p></td></tr><tr><td><p>KEYWORDS</p><p>Target localization;</p><p>Marine search and rescue (MSR);</p><p>Wireless sensor networks (WSNs);</p><p>Information fusion;</p><p>Received signal strength (RSS);</p><p>Time of arrival (TOA)</p></td><td><p>Abstract Marine search and rescue (MSR) is considered the last line of defense for human life at sea. Recently, a prospective MSR strategy based on wireless sensor networks (WSNs) has been developed, and distress-stricken individuals can be located utilizing various localization methods. Nevertheless, the accuracy cannot satisfy the requirement of related departments, especially when employing a single measurement localization technique, such as received signal strength (RSS)- based technology,in a dynamic and complicated ocean environment. To this end,a scheme inspired by information fusion is developed, which incorporates RSS and time of arrival (TOA) information. The maximum likelihood (ML)-based localization problem is then converted into a hybrid measure- ment alternative nonnegative constrained least squares (HM-ANCLS) framework. Moreover, the paper develops a two-step linearization localization approach (TLLA) to determine the target loca- tion. The first step proposes a slight computation method (SCM) that relies on an active set approach to address the framework. In the second step, the paper presents an error correction approach based on the first-order Taylor series expansion to refine the solution. In addition, the paper conducts the Cramr-Rao low bound (CRLB) and the computational complexity of the hybrid scheme. Simulations reveal that TLLA outperforms other state-of-the-art approaches in var- ious situations.</p><p>® 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (<a href="http://creativecommons.org/licenses/by-nc-nd/4.0/">http://creativecommons.org/</a> <a href="http://creativecommons.org/licenses/by-nc-nd/4.0/">licenses/by-nc-nd/4.0/</a>).</p></td></tr><tr><td></td><td><p><img src="/media/202408//1724838576.928869.png" /></p></td></tr></table><p><img src="/media/202408//1724838576.933283.jpeg" /></p><p>* Corresponding authors.</p><p>E-mail address: <a href="mailto:hfwu@shmtu.edu.cn">hfwu@shmtu.edu.cn</a> (H. Wu).</p><p>Peer review under responsibility of Faculty of Engineering, Alexandria University.</p><p>1. Introduction</p><p>Marine search and rescue (MSR), the last line of defense for human life at sea, plays an indispensable role in maritime transportation <a href="#bookmark1">[1]</a>. An MSR organization would rescue people in distress at sea and, if necessary, by cooperation with</p><p><a href="https://doi.org/10.1016/j.aej.2023.01.028">https://doi.org/10.1016/j.aej.2023.01.028</a></p><p>1110-0168 ® 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (<a href="http://creativecommons.org/licenses/by-nc-nd/4.0/">http://creativecommons.org/licenses/by-nc-nd/4.0/</a>).</p><p>neighboring MSR organizations via a variety of means, includ- ing dead reckoning <a href="#bookmark1">[2]</a>, remote sensing <a href="#bookmark1">[3]</a>, and wireless sensors networks (WSNs)-based technologies <a href="#bookmark1">[4]</a>. Among the measures for MSR, technology based on WSNs enables distressed indi- viduals to actively disclose their location, which boosts the rate of rescue in comparison to other techniques <a href="#bookmark1">[5]</a>. Overboard individuals carrying out the survival equipment with sensors embedded, known as targets, can be figured out via localiza- tion technique in WSNs-based MSR scheme. The system struc- ture for the scheme is depicted in <a href="#bookmark1">Fig. 1</a>. With its cost- effectiveness, flexibility, and scalability, the WSNs-based MSR is seen as a potential method for maritime rescue <a href="#bookmark1">[6]</a>.</p><p>Notwithstanding, localization in WSNs-based MSR is not an easy task. The difficulty arises in implementing the mission in such a highly dynamic ocean environment, along with the uncertain noise. The references therein <a href="#bookmark1">[7–10]</a> have illustrated a fast-paced introduction to this challenge. The localization accuracy might deteriorate if straightly applying the approaches in the terrestrial WSNs <a href="#bookmark1">[11–13]</a>. Therefore, some methods have been investigated to improve localization accuracy in the ocean environment. However, it has been well verified in literature since at least <a href="#bookmark1">[14]</a> that only one measurement used in localization</p><p>can easily cause significant performance deteriorations or even</p><p>failures on a large scale <a href="#bookmark1">[15]</a>. Although some methods inspired by information fusion have been proposed in terrestrial WSNs, the localization accuracy cannot satisfy the requirement of related departments in the WSNs-based MSR scheme due to the dynamic and complicated ocean environment.</p><p>To this end, we propose a two-step linearization localiza- tion approach (TLLA) for WSNs-based MSR by fusing the hybrid measurement. With a linearization operation exploited, the original localization problem is reshaped into a hybrid measurement alternative nonnegative constrained least square (HM-ANCLS) framework. Subsequently, the TLLA addresses</p><p>the framework by exploiting the two-round procedure. In the former round, a slight computation method (SCM) that relies on an active set approach is developed, whereas an error cor- rection method (ECM) based on the first-order Taylor series expansion is presented in the later round. Besides, we conduct the Cramr-Rao low bound (CRLB) of the hybrid scheme to evaluate the proposed method.</p><p>The main contributions of the paper can be concluded as follows:</p><p>1) The original localization problem in terms of the hybrid scheme with highly convex is converted into an HM-ANCLS framework via a linearization operation.</p><p>2) The TLLA that integrates the SCM with ECM is pre- sented for localization in WSNs-based MSR, in which the accuracy is improved compared with some state-of-the-art methods in a simulated dynamic environment.</p><p>3) The CRLB of the information fusion scheme is con- ducted to evaluate the performance of the proposed method.</p><p>The rest of the paper is organized as follows. The related works are illustrated in Section 2,whereas Section 3 formulates the localization problem using the hybrid measurement. In Section 4, we introduce the proposed method, i.e., TLLA. Moreover, the CRLB of the hybrid measurement scheme and the computational complexity are discussed in Section 5. Comprehensive simulation results in different scenarios com- pared with some state-of-the-art methods are demonstrated in Section 6. In Section 7, we conclude the paper.</p><p>2. Related works</p><p>Localization techniques generally contain two types,i.e., range- based and range-free. It has been acknowledged in the research since at least <a href="#bookmark1">[16,17]</a> that the localization accuracy of range- based techniques is better than that of range-free techniques.</p><p><img src="/media/202408//1724838576.951272.png" /></p><p>Fig. 1 WSNs-based MSR system structure.</p><p>Target localization using information fusion in WSNs-based Marine search and rescue 229</p><p>Sensors with some equipment facilitated could be aware of the distance towards the target, and the position would be acquired bysomemeans,forinstance,timeofarrival(TOA),timeofflight (TOF), time difference of arrival (TDOA), angle of arrival (AOA), received signal strength (RSS)-based approaches. Due to its outperformance, range-based techniques are widely used for localization in the ocean environment <a href="#bookmark1">[18]</a>.</p><p>To mention a few, R. Diamant et al. <a href="#bookmark1">[19]</a> have presented a TOF-based graph localization approach to assist a diver in dis- tress by formalizing the task as a non-convex, multi-objective constraint optimization problem. C. Zhao et al. <a href="#bookmark1">[20]</a> proposed a TOA-based three-stage localization method in which the localization error is compensated via correction parameters. To further improve the localization accuracy, C. Zhao et al. <a href="#bookmark1">[21]</a> developed a second-order TDOA (STDOA) and a general- ized STDOA (GSTDOA) to tackle the problem of signal per- iod decrease in the ocean environment. In contrast to TDOA, TOA, and AOA, with no synchronization or array require- ment in localization <a href="#bookmark1">[22]</a>, RSS-based techniques were widely used, especially for WSNs-based MSR. H. Wu et al. <a href="#bookmark1">[5]</a> con- verted the localization problem into a status estimation issue based on the RSS measurements, wherein an enhanced particle filter method (EPFM) for localization in MSR was presented. But the computational time of EPFM is significant. In this case, X. Mei et al. <a href="#bookmark1">[7]</a> then present a robust localization method with a relatively low computational complexity. The localiza- tion problem is formed into a generalized trust regional sub- problem (GTRS), and a bisection method is proposed.</p><p>Nevertheless, the localization accuracy of the RSS-based technique may degrade or even fail in the ocean environment due to its latent defects <a href="#bookmark1">[23,24]</a>. Inspired by the information fusion fundamental, research using hybrid measurements for localization, for instance, hybrid RSS and TOA information, has attracted scholars to explore <a href="#bookmark1">[25–30]</a>. For instance, M. Hosseini <a href="#bookmark1">[25]</a> proposed a multilateration technique to locate a target using hybrid measurement. R. Diamant et al. <a href="#bookmark1">[26]</a> pre- sented a hybrid scheme along with the non-line-of-sight (NLOS) link detection technique. Also, S. Tomic et al. <a href="#bookmark1">[27]</a> addressed localization problems in the NLOS environment. They have proposed a novel alternating algorithm by applying a squared range (SR) and weighted least squares (WLS) crite- rion, the so-called SRWLS.</p><p>However, the localization accuracy of the existing hybrid methods is relatively low and cannot meet the MSR mission. Moreover, the computational complexity of the existing meth- ods is significant, which may increase the computing time for location determination. As we know, the target location may be changeable over the winds or currents. If the localization procedure consumes too much time, the location we eventually get may not be the true one at the current time slot. In this case, computational efficiency is another vital factor for WSNs-based MSR. The existing hybrid methods cannot well balance the trade-off between accuracy and efficiency. More- over, to the best of our knowledge, localization for MSR using information fusion in such a highly dynamic ocean environ- ment has not been fully addressed.</p><p>In this context, the paper develops TLLA that can have a relatively good localization accuracy on the premise of compu- tational efficiency for MSR. The original highly convex maximum-likelihood (ML)-based localization problem is reshaped into the HM-ANCLS framework with a linearization operation. To figure out the solution of the framework, the</p><p>paper further divided TLLA into two parts. The first part is the coarse estimation based on SCM, whereas the second is the refined estimation based on ECM. It is worth noting that SCM is avariant of least squares (LS). The solution may drop to the local minimum. In this case, ECM based on the first- order Taylor series expansion is developed to refine the solu- tion. With the two-step estimation, localization accuracy can be guaranteed. Also, as mentioned above, SCM comes from LS, whereas ECM is from the Taylor series expansion. Since the computational complexity of LS and Taylor series expan- sion is considered linear to the dimension <a href="#bookmark1">[31]</a>, the proposed method’s computational efficiency can also be guaranteed. The simulation results in section 6 also reveal the outperfor- mance of the TLLA compared with other methods.</p><p>3. Problem formulation</p><p>The localization scenario can be referred to as <a href="#bookmark1">Fig. 1</a>, where the overboard people carrying out the survival equipment with the sensors are recognized as the targets. The rescue helicopter deploys the sensors with global positioning systems (GPS) in the area of interest, known as anchors. Furthermore, all these sensors, including anchors and targets, connect via a particular protocol <a href="#bookmark1">[32]</a>. Then, the mission for searching the targets is then transformed into the localization problem in the network <a href="#bookmark1">[5]</a>.</p><p>Assume there are N sensors with GPS information (an- chors) and a target that needs to be located in the area of inter- est. The positions of the ith sensors and the target at time t are</p><p>a = [a1 ; a2]T andxt = [x ; x]T, respectively, where T repre-</p><p>sents the transpose operation andi = 1; ... ; N. Without loss of generality, anchors could receive the radio signal with the hybrid information of RSS and TOA from the target at each time slot, which can be modeled as <a href="#bookmark1">[27]</a></p><p>Pi = <img src="/media/202408//1724838576.982709.png" />fflfflfflffl<img src="/media/202408//1724838576.988128.png" /><img src="/media/202408//1724838576.992296.png" /><img src="/media/202408//1724838577.022156.png" />}) —10atlog10 <img src="/media/202408//1724838577.043052.png" /> 十 y ; (1)</p><p>d = Ⅱ xt — a Ⅱ十 η ; (2)</p><p>where Pi denotes the received signal power of the ith sensor</p><p>from the target at timet, d0 is a reference distance</p><p>(Ⅱ xt — a Ⅱ ≥ d0), P is the transmit power of the target at</p><p>timet, PL(d0 ) indicates the loss in signal strength when the ref- erenced distanced0 = 1 m, at represents the path loss exponent</p><p>at timet, Ⅱ . Ⅱ is the l2 norm, y and η are the measurement</p><p>noises of RSS and TOA, respe~ctively, where the~y aremodeled</p><p>as Gaussian distribution yN (0; σ) and ηN (0; δ) if we</p><p>assume the corresponding variances of each at time t are</p><p>asymptotically equal, i.e., σ ≈ σi ≈ σ andδ ≈ δi ≈ δ .</p><p>Suppose the RSS and TOA measurement information are independently distributed. Given the observation vector</p><p>Pt = [Pi]T anddt = [d]T, the joint probability density func-</p><p>tion (PDF) is given as</p><p>p(Pt ; dt |xt ) = p(Pt |xt )p(dt |xt ) N 1</p><p><img src="/media/202408//1724838577.154381.png" />= Yi=1 √<img src="/media/202408//1724838577.201258.png" />>ffiffi<img src="/media/202408//1724838577.237657.png" /><img src="/media/202408//1724838577.263561.png" /><img src="/media/202408//1724838577.2995992.png" /><img src="/media/202408//1724838577.443987.png" /><img src="/media/202408//1724838577.5039601.png" />ffit — Pt 十 10atlog Ⅱxt —a Ⅱ)2 δ2 十 (dt — Ⅱ xt — at Ⅱ )2 σ2 9></p><p>. exp <> — <img src="/media/202408//1724838577.537652.png" /> >=.</p><p>: ; (3)</p><p>With the maximizing operation of the joint PDF exploited, the maximum likelihood (ML) estimator of xt is derived as</p><p>F(t ) = argxmt in Σi<img src="/media/202408//1724838577.578466.png" />1</p><p>(Pi — P 十 10atlog10 <img src="/media/202408//1724838577.610063.png" />2 δ2 十 (d — Ⅱ xt — a Ⅱ )2 σ2</p><p>× <s> </s></p><p>2σ2 δ2 .</p><p>(4)</p><p>Nevertheless, it is still challenging to figure out the solution in <a href="#bookmark1">(4)</a> with a substantial computational complexity due to its high non-convexity. In this context, we develop an alternative scheme to solve the highly non-convex problem under the HM- ANCLS framework.</p><p>4. Proposed two-linearization localization approach</p><p>In this section, the proposed TLLA is described in three parts: in the first part, we illustrate the linearization procedure for constructing the HM-ANCLS framework from the original localization problem, followed by the SCM on solving the framework, while the last part proposes the ECM based on the first-order Taylor series expansion (considered as the sec- ond linearization operation) for modifying the solution obtained by SCM.</p><p>4.1. HM-ANCLS framework</p><p>We firstly make a transformation by applying the simple manipulations from <a href="#bookmark1">(1)</a> such that</p><p>μ .Ⅱ xt — a Ⅱ = λ . 10<img src="/media/202408//1724838577.6565099.png" /> ; (5)</p><p>where μ = 10<img src="/media/202408//1724838577.692299.png" />t = d0 10<img src="/media/202408//1724838577.777546.png" /> .</p><p><a id="bookmark1"></a>When the noise is relatively small, and the right side of <a href="#bookmark1">(5)</a> can be approximated using the first-order Taylor series expan- sion <a href="#bookmark1">[31]</a> as</p><p>μ .Ⅱ xt — a Ⅱ = λt . (1 十 <img src="/media/202408//1724838577.9522681.png" /> σ); (6)</p><p>Given the assumption that σi = σ andδi = δ, the problem in</p><p><a href="#bookmark1">(4)</a> could be converted into</p><p>argxmt in Σi<img src="/media/202408//1724838577.973799.png" />1 (λt — μ .Ⅱ xt — a Ⅱ )2 十 Σi<img src="/media/202408//1724838577.9781172.png" />1 (d — Ⅱ xt — a Ⅱ )2 .</p><p>(7)</p><p>Further squaring the range of each term, the problem is then derived as</p><p>argxmt in Σi<img src="/media/202408//1724838577.983011.png" />1 ({λt }2 —{μ }2 xt 十 2{μ }2 {a }Txt —{μ }2 Ⅱ a Ⅱ2 )2 十 Σi<img src="/media/202408//1724838577.988223.png" />1 ( {d }2 — xt 十 2{a }Txt — Ⅱ a Ⅱ2 ); (8)</p><p>where xt = Ⅱ xt Ⅱ2 .</p><p>Let θt = [x ; x ; xt]T be the estimated variables. With the</p><p>constraint ofθt ≥ 0, the original problem in <a href="#bookmark1">(4)</a> is then trans- formed into the HM-ANCLS framework with a single right- hand side (RHS) vector,</p><table><tr><td colspan="2"><p>argminⅡ Atθt — Bt θt ≥ 0</p></td><td rowspan="2"><p>Ⅱ2 ;</p><p>— {μ }2</p><p>.</p><p>.</p><p>.</p><p>— {μ}2</p><p>—1</p><p>.</p><p>.</p><p>.</p><p>—1</p></td><td rowspan="2"><p>l 「 I I I I I I I I I I I I I I <strong> I </strong>; Bt = <strong>I </strong>I I I I I I I I I I I I I I 」 l</p></td><td rowspan="2"><p>{μ }2 Ⅱ a Ⅱ2 — {λt }2</p><p>.</p><p>.</p><p>.</p><p>{μ}2 Ⅱ a Ⅱ2 — {λt }2 Ⅱ a Ⅱ2 —{d }2</p><p>.</p><p>.</p><p>.</p><p>Ⅱ a Ⅱ2 —{d}2</p></td><td rowspan="2"><p>(9)</p><p>l I</p><p>I</p><p>I</p><p>I</p><p>I</p><p>I</p><p>I</p><p>I</p><p>I . I</p><p>I I I I I I</p><p>」</p><p>(10)</p></td></tr><tr><td><p>where</p><p>「 I I I I I I I</p><p>At = <strong>I </strong>I I I I I I I l</p></td><td><p>2 {μ }2 {a }T</p><p>.</p><p>.</p><p>.</p><p>2 {μ}2 {a}T 2 {a }T</p><p>.</p><p>.</p><p>.</p><p>2 {a}T</p></td></tr></table><p>4.2. Slight computation method (SCM)</p><p>To figure out the solution in <a href="#bookmark1">(9)</a>, the SCM that relies on an active set approach is introduced. A solid solution with rela- tively high accuracy can be obtained in a finite number of iter- ations compared with others <a href="#bookmark1">[33]</a>.</p><p>In SCM, we define the setΩ = {1; 2; 3}, in which each value indexes the columns of At and the rows ofθt . In addition, we divide the set Ω into two subsets named the active set Ψ and the passive set Y such thatΨ U Y = Ω .</p><p>Theorem. <a href="#bookmark1">[34]</a>: Assume a vector ζt ∈ R3×1 is a solution of the problem in <a href="#bookmark1">(9)</a> defined as.</p><p>argmin Ⅱ Atζt — Bt Ⅱ2 ; s.t. ζt ≥ 0 (11)</p><p>if and only if there exists a vector rt ∈ R3×1 and a partition of the integers 1 through 3 into subsets Ψ and Y in case that with rt = (At )T (Atζt — Bt )</p><p>ζ = 0 for j ∈ Ψ ; ζ > 0 for j ∈ Y; ( <a href="#bookmark2">12</a>)</p><p>r ≥ 0 for j ∈ Ψ ; r = 0 for j ∈ Y; (13)</p><p>where j indicates the index value of the setY.</p><p>Then, the vector ζ that satisfies</p><p>ζ > 0 for j ∈ Y and ζ = 0 for j ∈ Ψ ; (14)</p><p>is the solution of the problem</p><p>argminⅡ Aζ — Bt Ⅱ2 ; (15)</p><p>θt</p><p>where A is a 2N × 3 matrix and defined as</p><p>column j of A = { column; <img src="/media/202408//1724838578.008169.png" /> ;j ∈ Y ; (16)</p><p>And the dual vector xt = —rt = (At )T (Bt — Atζ) would</p><p>satisfy</p><p>x = 0; j ∈ Y and x ≤ 0; j ∈ Ψ . (17)</p><p>The problem results in <a href="#bookmark1">(9)</a> would be the final solution if and only if the conditions in Theorem are satisfied.</p><p>Specifically, SCM consists of an outer loop and an inner loop. In the outer loop step, we should figure out the solution of <a href="#bookmark1">(15)</a> and search an index q ∈ Ψ subject</p><p>Target localization using information fusion in WSNs-based Marine search and rescue 231</p><p>tow = max {w : j ∈ Ψ}. Subsequently, the index q would be</p><p>moved from the set Ψ to the setY.</p><p>In the inner loop, a new index k ∈ Y that we need to figure out such that</p><p>θ<img src="/media/202408//1724838578.057874.png" />/ (θ<img src="/media/202408//1724838578.066408.png" />—ζ<img src="/media/202408//1724838578.069325.png" />) = min {θ/ (θ—ζ) : ζ ≤ 0,j ∈ Y},</p><p>βt = θ<img src="/media/202408//1724838578.077049.png" />/ (θ<img src="/media/202408//1724838578.097224.png" />—ζ<img src="/media/202408//1724838578.099026.png" />),</p><p>(18)</p><p>ζt = θt 十 βt (ζt — θt ).</p><p>The entire procedure of SCM could be concluded in Algo- rithm SCM.</p><table><tr><td><p>Algorithm SCM:</p></td></tr><tr><td><p>1. Initiation:θt = 03×1 ,Ψ = {1, 2, 3},Y =,xt = (At )T (Bt — Atθt )</p></td></tr><tr><td><p>2. Do while (Ψ≠ and 彐 j ∈ Ψ with x > 0)</p></td></tr><tr><td><p>3. Find an index q ∈ Ψ such that w = max {w : j ∈ Ψ}</p></td></tr><tr><td><p>4. Pass the index q from the set Ψ to the set Y</p></td></tr><tr><td><p>5. Solve the problem of <a href="#bookmark1">(15)</a> and define ζ = 0 for j ∈ Ψ</p></td></tr><tr><td><p>6. Do while (ζ ≤ 0 for any j ∈ Y)</p></td></tr><tr><td><p>7. Find an index k ∈ Y with <a href="#bookmark1">(18)</a></p></td></tr><tr><td><p>8. Pass the set Y to the set Ψ for all indices j ∈ Y such</p><p>thatθ = 0.</p></td></tr><tr><td><p>9. Solve the problem of <a href="#bookmark1">(15)</a></p></td></tr><tr><td><p>10. End While (ζ > 0 for all j ∈ Y)</p></td></tr><tr><td><p>11. θt = ζt and xt = (At )T (Bt — Atθt )</p></td></tr><tr><td><p>12.End While (Ψ is empty or w ≤ 0 for all j ∈ Ψ)</p></td></tr></table><p>4.3. Error correction method (ECM)</p><p>Theoretically, SCM can obtain a suboptimal solution t by</p><p>exchanging the index of potential from the passive set and the active set. However, the potential solution is generally acquired by the variant of LS, which may drop to the local minimum. Therefore, the ECM is presented to boost the per- formance of SCM. We first reconstruct the optimized function as</p><p>Φt = 夕t θt 十 Δt , (19)</p><p>where</p><p>Φt = [ (ζ)2 , (ζ)2 , ζ]T,θt = [ (x)2 , (x)2]T,夕t = [I2, 12×1]T,</p><p>and</p><p>「 (ζ)2 —(x)2 l 「 (ζ 十 x)(ζ — x) l 「2x (ζ — x) l</p><p>Δt = <strong>I </strong>(ζ)2 —(x)2 <strong>I </strong>= I (ζ 十 x)(ζ — x) I ≈ I 2x (ζ — x) I .</p><p>l ζ — xt 」 l ζ — xt 」 l ζ — xt 」</p><p>(20)</p><p>Then, the corresponding estimate θt could be obtained by θt = {(夕t )T夕t }—1 (夕t )TΦt . (21)</p><p>Since <a href="#bookmark1">(21)</a> are the estimates of (x)2 and (x)2 , we need to</p><p>employ the signum function to modify the sign of the corre-</p><p>sponding solution, i.e.,</p><p>t = [sign (ζ) √<img src="/media/202408//1724838578.1125991.png" /><img src="/media/202408//1724838578.120516.png" />, sign (ζ) √<img src="/media/202408//1724838578.141694.png" /><img src="/media/202408//1724838578.153682.png" />]</p><p>T</p><p>. (22)</p><p>However, it should be noted that one more square root operation is implemented in <a href="#bookmark1">(22)</a> to figure out the final solu- tion, which might exacerbate the estimation error inζt .</p><p>In this context, we develop a squaring root-free method that is a linearization approach based on the first-order Taylor series expansion.</p><p>Recalling from the problem in <a href="#bookmark1">(9)</a>, we assume the estimate ^</p><p>obtained by SCM isθCM . The corresponding cost function can</p><p>be rewritten as</p><p>J = (Atθt — Bt )TAtθt — Bt</p><p>= (θt — CM )T (At )TAt (θt — CM ). (23)</p><p>where θt = [ , , t]T.</p><p>After using the first-order Taylor series expansion of</p><p>θt — CM for θ:2 approachingt , we can acquire</p><p>θt — CM = θt'' θ:2 = t — CM</p><p>十 <img src="/media/202408//1724838578.1659782.png" /> '' θ:2 = t (θ:2 — t ) = Θ 十 I (θ:2 — t ), (24)</p><p>where</p><p>Θ = θt'' θ:2 = t — CM =「I</p><p>0 l 0 I ,</p><p>Ⅱ2 — t 」</p><p>[ 2(<img src="/media/202408//1724838578.183815.png" />)T ].</p><p>l Ⅱ t</p><p>(25)</p><p>I = <img src="/media/202408//1724838578.223474.png" /> '' θ:2 = t (θ:2 — t ) =</p><p>Replacing the corresponding term in <a href="#bookmark1">(23)</a> with <a href="#bookmark1">(24)</a>, the function can be reshaped into</p><p>J = {Θ 十 I (θ:2 — t )}T (At )TAt {Θ 十 I (θ:2 — t )}. (26) Taking the derivative of <a href="#bookmark1">(26)</a> in terms ofθ:2, then we have</p><p><img src="/media/202408//1724838578.2605078.png" /> = 2IT (At )TAt I (θ:2 — t ) 十 2IT (At )TAt Θ . (27)</p><p>By forcing <a href="#bookmark1">(27)</a> to 0, the corrected solution can be obtained as</p><p>orrected = t — {IT (At )TAt I }—1IT (At )TAt Θ . (28)</p><p>5. Evaluation of the hybrid scheme for localization</p><p>In this section, we conduct the CRLB for the hybrid measure- ment scheme to calibrate the proposed method. Moreover, the computational complexity of TLLA is discussed and compared with other state-of-the-art approaches.</p><p>5.1. Cramr-Rao low bound (CRLB)</p><p>Theoretically, CRLB is considered the benchmark of anyunbi- ased estimators <a href="#bookmark1">[35]</a>. Thus, we conduct the CRLB of the hybrid RSS and TOA scheme in this part.</p><p>In what concerns RSS and TOA, the corresponding mea- surements at each time slot can be expressed as</p><table><tr><td><p>「 Pt = <strong>I </strong>l</p></td><td><p>Pt</p><p>r1</p><p>.</p><p>.</p><p>.</p><p>Pt</p><p>rN</p></td><td><p>l 「 d l</p><p><strong>I </strong>; dt = <strong>I </strong>... <strong>I </strong>.</p><p>」 ld 」</p></td><td><p>(29)</p></td></tr></table><p>Because the noises follow the Gaussian distribution, the PDF of each term can be stated as</p><p>pRSS (Pi |xt ) = (2兀<img src="/media/202408//1724838578.3112488.png" />1/2σ exp { — <img src="/media/202408//1724838578.354135.png" />; (30)</p><p>where Λ = Pi — P 十 10atlog10 <img src="/media/202408//1724838578.554726.png" /> .</p><p>pTOA (d |xt ) = (2兀<img src="/media/202408//1724838578.595049.png" />1/2δ exp { — <img src="/media/202408//1724838578.602016.png" />; (31)</p><p>where H = d — Ⅱ xt — a Ⅱ.</p><p>To take the logarithm of each term, and then we have</p><p>lnpRSS (Pi |xt ) = — <img src="/media/202408//1724838578.610603.png" />ln2兀 — Nlnσ — <img src="/media/202408//1724838578.613989.png" /> (Λ)2 . (32)</p><p>lnpTOA (d|xt ) = — <img src="/media/202408//1724838578.6186528.png" />ln2兀 — Nlnδ — <img src="/media/202408//1724838578.627799.png" /> (H)2 . (33)</p><p>The partial derivative of <a href="#bookmark1">(32) and (33)</a> with subject to xt when d0 = 1 m are</p><p>∂ lnpRSS (Pi |xt ) = 10at x —a1 </p><p>∂x σ2 ln10 Ⅱxt —a Ⅱ2 ;</p><p>∂ lnpRSS (Pi |xt ) = 10at x —a2 </p><p>∂x σ2 ln10 Ⅱxt —a Ⅱ2 ;</p><p>(34)</p><p>∂ lnpTOA (d | xt ) x —a1 </p><p>∂x = δ2 Ⅱxt —a Ⅱ2 ;</p><p>∂ lnpTOA (d | xt ) x —a1 </p><p>∂x = δ2 Ⅱxt —a Ⅱ2 .</p><p>As for N anchors, then we have</p><p>「</p><p> 10at x —at12 σ2 ln10 Ⅱxt —a Ⅱ2</p><p> 10at x —a σ2 ln10 Ⅱxt —a Ⅱ2</p><p>l I</p><p>I</p><p>I ; I</p><p>」</p><p>∂ lnpRSS (Pt|xt) = I</p><p>I</p><p>.</p><p>.</p><p>.</p><p> 10at x —a2 σ2 ln10 Ⅱxt —aⅡ2</p><p>.</p><p>.</p><p>.</p><p> 10at x —a1 σ2 ln10 Ⅱxt —aⅡ2</p><p>∂xt I I l</p><p> x —at12 δ2 Ⅱxt —a Ⅱ2</p><p>(35)</p><p> x —a δ2 Ⅱxt —a Ⅱ2</p><p>「</p><p>I</p><p>= I I I l</p><p>l I</p><p>I</p><p>I . I</p><p>」</p><p>∂ lnpTOA (dt|xt) ∂xt</p><p>.</p><p>.</p><p>.</p><p>.</p><p>.</p><p>.</p><p> x —a1 δ2 Ⅱxt —a Ⅱ2</p><p> x —a2 δ2 Ⅱxt —a Ⅱ2</p><p>The Fisher information matrix (FIM) can be obtained as</p><p>FIMRSS = <img src="/media/202408//1724838578.647566.png" />T <img src="/media/202408//1724838578.6569622.png" /> ; FIMTOA = <img src="/media/202408//1724838578.661674.png" />T <img src="/media/202408//1724838578.664175.png" /> .</p><p>(36)</p><p>CRLB is the trace of the inverse of the FIM <a href="#bookmark1">[35]</a>. In the hybrid measurement scheme, RSS and TOA are assumed to be statistically independent. In this case, the CRLB of the hybrid scheme can be added up by each FIM according to <a href="#bookmark1">[36]</a>. Then, the CRLB of the hybrid RSS and TOA can be expressed as</p><p>CRLB = Tr (FIM—1) = Tr [(FIMRSS 十 FIMTOA )—1]. (37)</p><p>5.2. Computational complexity</p><p>Several state-of-the-art methods are discussed for the compar- ison in terms of computational complexity, including WLS in <a href="#bookmark1">[37]</a>, SRWLS in <a href="#bookmark1">[27]</a>, linear least squares (LLS-I) in <a href="#bookmark1">[38]</a>, Semi-Definite Relaxation (SDP) in <a href="#bookmark1">[28]</a>, the proposed SCM, and TLLA. It is noteworthy that both WLS and LLS-I are based on LS, wherein the computational complexity isO(N). Regarding SRWLS, it needs to figure out the inverse of the diagonal matrix in each bisection procedure. In this case, the computational complexity is relatively more significant than that of WLS and LLS-I. Suppose τ is the maximum number of iterations, then the computational complexity of SRWLS is O(τN) if the worst condition happens. When it comes to SDP, the solution of which is obtained by the standard interior-point methods. Assuming the worst case occurs, the computational complexity of SDP should be</p><p>O {√-log <img src="/media/202408//1724838578.675025.png" />N(N 十 3)2 十 N2 (N 十 3)2 十 N3 )}; (38)</p><p>where ε denotes the solution precision. On average, the worst- case complexity of SDP could beO(N4.5 ).</p><p>In SCM, the corresponding solution is also solved by LS with two rounds. Therefore, the computational complexity of SCM isO(N2 ). While more extra operation needs to be han- dled in terms of <a href="#bookmark1">(28)</a>, the computational complexity of ECM would beO(N). In this case, the computational complexity of the two-step linearization method, i.e., TLLA, should beO(N(1 十 N)). <a href="#bookmark1">Table 1</a> summarizes the considered methods. Although the computational complexity of the proposed two-step linearization method is higher than that of some methods, the localization accuracy and computational time are satisfied with the MSR mission from the simulation results demonstrated in next section.</p><p>6. Simulation results and discussion</p><p>6.1. Simulation environment and the calibration</p><p>To evaluate the performance of the proposed method, we carry out the simulations in different scenarios in Matlab R2021b compared with WLS, SRWLS, LLS-I, SDP, and the CRLB in <a href="#bookmark1">(37)</a>. The corresponding simulation environment is illus- trated in <a href="#bookmark1">Table 2</a>.</p><table><tr><td><p>Table 1 Summary complexity.</p></td><td><p>of</p></td><td><p>the</p></td><td><p>computational</p></td></tr><tr><td><p>Method</p></td><td></td><td></td><td><p>Complexity</p></td></tr><tr><td><p>WLS</p></td><td></td><td></td><td><p>O(N)</p></td></tr><tr><td><p>SRWLS</p></td><td></td><td></td><td><p>O(τN)</p></td></tr><tr><td><p>LLS-I</p></td><td></td><td></td><td><p>O(N)</p></td></tr><tr><td><p>SDP</p></td><td></td><td></td><td><p>O (N4.5 )</p></td></tr><tr><td><p>SCM</p></td><td></td><td></td><td><p>O (N2 )</p></td></tr><tr><td><p>TLLA</p></td><td></td><td></td><td><p>O(N(1 十 N))</p></td></tr></table><p>of interest is large, or the noise is relatively high, the localiza- tion accuracy may deteriorate dramatically. In this case, it can be seen from <a href="#bookmark1">Fig. 2</a> that the performance of TLLA with only RSS measurement is the worst.</p><p>It is worth noting that the positions of the target and anchors are changeable due to the currents and winds on the sea surface. In this context, we randomly deploy the anchors and the target initiatively and use the random walk model <a href="#bookmark1">[39]</a> to mimic the dynamics of all nodes, which, in other words, means the position of all nodes is not fixed at each time slot. The rest of the fixed parameters are set asτ = 1000,d0 = 1 m.</p><p>As the calibration for the performance, the root means square error (RMSE) is conducted as</p><p>However the drawback of the RSS-based technique can be eliminated by information fusion. As <a href="#bookmark1">Fig. 2</a> shows, the perfor- mance of the hybrid measurement scheme is better than that of only the RSS-based approach. Interestingly, the proposed method with TOA measurement only seems to outperform most hybrid schemes, which proves the effectiveness of the proposed two-step linearization approach. Although SCM can perform relatively satisfactorily, the solution could be modified with ECM. The localization accuracy is further improved by the two-step linearization-based method, i.e., TLLA, and close to CRLB. The outperformance of the pro- posed method, i.e., TLLA, in terms of variable anchors can be illustrated further with cumulative distribution function (CDF) in <a href="#bookmark1">Fig. 3</a>. The proposed two-step linearization method</p><p>--------------------------------------</p><p>RMSE = <img src="/media/202408//1724838578.690853.png" /></p><p>Σ<img src="/media/202408//1724838578.697097.png" />a Ⅱ t — xt Ⅱ. (39)</p><p>where t and xt denote the actual position and the estimate at</p><p>each time slot, respectively, and tmax is the maximum time that we set tmax = 1000 s in the simulations.</p><p>6.2. Senario with variable anchors</p><p>The RMSE versus variable anchors is depicted in <a href="#bookmark1">Fig. 2</a> with the parameters in <a href="#bookmark1">Table 3</a>. Theoretically, more available mea- surement information can be acquired with the increase of the anchors. Therefore, the performance of the methods is improved in the simulation as expected. It should be empha- sized that the RSS model figures out the measurement based on the loss of signal intensity recalling from <a href="#bookmark1">(1)</a>. Once the area</p><p>with information fusion can achieveⅡ t — xt Ⅱ</p><p>≤ 5.03 m,Ⅱ t — xt Ⅱ ≤ 3.95 m,Ⅱ t — xt Ⅱ ≤ 3.53 m and</p><p>Ⅱ t — xt Ⅱ ≤ 3. 17 m at almost 95 % inN = 6,N = 8,N = 10,</p><p>andN = 12, respectively. In contrast, other state-of-the-art methods can reach the same probability at a relatively high localization error.</p><table><tr><td colspan="2"><p>Table 3 Parameters in the scenario with variable anchors.</p></td></tr><tr><td><p>Parameter</p></td><td><p>Value</p></td></tr><tr><td><p>σ</p></td><td><p>5 dB</p></td></tr><tr><td><p>δ</p></td><td><p>5 m</p></td></tr><tr><td><p>at</p></td><td><p>3.5</p></td></tr><tr><td><p>P</p></td><td><p>—55 dBm</p></td></tr><tr><td><p>Sidelength</p></td><td><p>100 m</p></td></tr></table><table><tr><td colspan="3"><p>Table 2 Simulation environment.</p></td></tr><tr><td rowspan="2"><p>Hardware</p></td><td><p>Memory</p></td><td><p>CPU</p></td></tr><tr><td><p>8 GB</p></td><td><p>Intel (R) Core (TM) i7-8550U, CPU</p><p>1.8 GHz</p></td></tr><tr><td><p>Software</p></td><td><p>Platform Matlab</p><p>R2021b</p></td><td><p>Operation System Windows 10</p></td></tr></table><p><img src="/media/202408//1724838578.7425878.png" /><img src="/media/202408//1724838578.7453492.png" /></p><p><img src="/media/202408//1724838578.750998.png" /><img src="/media/202408//1724838578.754326.png" /><img src="/media/202408//1724838578.7565749.png" /><img src="/media/202408//1724838578.757975.png" /></p><p><img src="/media/202408//1724838578.762484.png" /><img src="/media/202408//1724838578.781645.png" /></p><p><img src="/media/202408//1724838578.788722.png" /><img src="/media/202408//1724838578.8099892.png" /></p><p><img src="/media/202408//1724838578.849795.png" />Fig. 2 RMSE versus variable anchors.</p><p>Fig. 3 CDF of variable anchors.</p><p>6.3. Scenario with variable noises</p><table><tr><td colspan="2"><p>Table 4 Parameters in the scenario with variable noises.</p></td></tr><tr><td><p>Parameter</p></td><td><p>Value</p></td></tr><tr><td><p>N</p></td><td><p>8</p></td></tr><tr><td><p>at</p></td><td><p>3.5</p></td></tr><tr><td><p>P</p></td><td><p>-55 dBm</p></td></tr><tr><td><p>Sidelength</p></td><td><p>100 m</p></td></tr></table><p>The RMSE versus variable noises of RSS and TOA is shown in <a href="#bookmark1">Fig. 4</a> with parameters in <a href="#bookmark1">Table 4</a>. Moreover, it is worth noting that we assume the values of the variances of RSS and TOA are the same for convenience. With variances rising, the local- ization accuracy of the methods degrades, as shown in <a href="#bookmark1">Fig. 4</a>. The rate of deterioration of TLLARSS is relatively more promi- nent than that of the others due to the absence of information fusion technology and the inherent defects of the RSS-based technique.</p><p><img src="/media/202408//1724838578.899221.png" /><img src="/media/202408//1724838578.916967.png" /><img src="/media/202408//1724838578.9396532.png" /><img src="/media/202408//1724838578.9892778.png" /><img src="/media/202408//1724838579.12315.png" /><img src="/media/202408//1724838579.171369.png" /><img src="/media/202408//1724838579.1985972.png" /><img src="/media/202408//1724838579.236211.png" /><img src="/media/202408//1724838579.260841.png" /><img src="/media/202408//1724838579.301389.png" /><img src="/media/202408//1724838579.4812758.png" /><img src="/media/202408//1724838579.5652611.png" /><img src="/media/202408//1724838579.652372.png" /><img src="/media/202408//1724838579.69171.png" />Among the methods, WLS and SRWLS seem to have good robustness over the change in the noise. However, the localiza- tion accuracy of WLS is not satisfactory compared with SRWLS. Although information fusion technology is used in SCM, the localization accuracy of SCM is similar to that of TLLATOA. From the comparison of SCM, TLLATOA, and TLLARSS, we can see that the localization accuracy of the TOA-based technique is higher than that of the RSS-based technique. Also, the second step of correction, i.e., ECM, seems to decrease the localization error. In this case, the localization accuracy of TLLA with the information fusion technology beats others and is close to CRLB. The outperformance of TLLA can be clearly seen in <a href="#bookmark1">Fig. 5</a>, wherein</p><p><img src="/media/202408//1724838579.763315.png" /><img src="/media/202408//1724838579.821776.png" />TLLA can reach the error thatk t - xt k ≤ 1.89 m, k t - xt k</p><p>≤ 3.23 mk t - xt k ≤ 4. 16 m and k t - xt k ≤ 5.06 m at</p><p><img src="/media/202408//1724838579.83323.png" /><img src="/media/202408//1724838579.8372831.png" /><img src="/media/202408//1724838579.8393679.png" /><img src="/media/202408//1724838579.8574688.png" />95 % over the change of variance value from 1 to 7. On the contrary, the others could approach the same probability with a relatively high error. For instance, SCM achieves the same</p><p>probability with the error thatk t - xt k ≤ 2.28 m,</p><p>k t - xt k ≤ 4.35 m,k t - xt k ≤ 5.74 m and k t - xt k ≤</p><p>Fig. 5 CDF of variable noises.</p><p>6. 17 m.</p><p>6.4. Scenario with variable side lengths (SL) of the area</p><p>It should be noted that anchors and the target would drift on the sea surface due to the impact of the currents and winds. In this case, the area for locating might be changeable. Assume</p><p>the communication radius of the sensors is above 500 m. We conduct the simulation of variable side lengths of the area, as shown in <a href="#bookmark1">Fig. 6</a>, for MSR with parameters in <a href="#bookmark1">Table 5</a>. The more significant the area is, the more severe the path loss effect would have in the RSS-based technique due to its attri- bution. In this case, the performance of TLLARSS seems to be the worst among the methods.</p><p>Interestingly, the localization accuracy of WLS, SRWLS, and SDP degrades over the rise in side length, whereas LLS- I, SCM, TLLATOA, and TLLA are more robust to the change of the side length. The localization accuracy of TLLATOA is similar to that of LLS-I and SCM. The proposed method with the information fusion technology, i.e., TLLA, seems to be better than the others, which enables securing the error less than 5 m at 95 % on average, as shown in <a href="#bookmark1">Fig. 7</a>, compared with that of, for instance, 7 m for LLS-I, SCM,and TLLATOA.</p><p><img src="/media/202408//1724838579.87651.png" /></p><p>6.5. Scenario with variable path loss exponents (PLE)</p><p>M.R. Gholami et al. <a href="#bookmark1">[40]</a> have studied that the PLE may change over the temperature, pressure, or humidity ranging from 2 to 6. In this context, simulations in variable PLE are carried out in this part, where parameters are shown in <a href="#bookmark1">Table 6</a>. It is worth noting that there is no PLE involved in the TOA- based technique, which, in other words, means the change of PLE will not have any positive or negative effects on localiza- tion accuracy subject to the TOA-based method. Thus, we</p><p>Fig. 4 RMSE versus variable noises of RSS and TOA.</p><p>Target localization using information fusion in WSNs-based Marine search and rescue 235</p><p><img src="/media/202408//1724838579.8832672.png" /><img src="/media/202408//1724838579.892256.png" />remove the corresponding results of TLLATOA that only use the TOA-based method to figure out the measurements in this part.</p><p>Moreover, the RMSE versus variable PLE and the corre- sponding CDF are depicted in <a href="#bookmark1">Fig. 8</a> and <a href="#bookmark1">Fig. 9</a>, respectively. Theoretically, the larger the PLE is, the more similar the indoor channel condition that the environment approaches <a href="#bookmark1">[41]</a>. In this case, the localization accuracy is improved signif- icantly over the rise in the PLE in TLLARSS. With the TOA- based measurements fused in the localization, the localization accuracy seems robust to the PLE for most methods except for SDP. Among these methods, the performance of TLLA appears to be better than the others and can secure the error within 4.5 m on average in variable PLE, as shown in <a href="#bookmark1">Fig. 9</a>.</p><p><img src="/media/202408//1724838579.903748.png" />6.6. Scenario with variable transmit power (TP)</p><p>To further demonstrate the effectiveness of the proposed method, we carry out the simulations in different TP with parameters in <a href="#bookmark1">Table 7</a>, as shown in <a href="#bookmark1">Fig. 10</a>. There is no TP involved in the calculation of the TOA-based model <a href="#bookmark1">(2)</a>. Thus, the results of TLLATOA are not illustrated in this part. It can be seen from <a href="#bookmark1">Fig. 10</a> that all methods seem to be robust to the</p><p>Fig. 6 RMSE versus variable SL of the area.</p><table><tr><td colspan="2"><p>Table 5 Parameters in the scenario with variable sl.</p></td></tr><tr><td><p>Parameter</p></td><td><p>Value</p></td></tr><tr><td><p>σ</p></td><td><p>5 dB</p></td></tr><tr><td><p>δ</p></td><td><p>5 m</p></td></tr><tr><td><p>at</p></td><td><p>3.5</p></td></tr><tr><td><p>P</p></td><td><p>-55 dBm</p></td></tr><tr><td><p>N</p></td><td><p>8</p></td></tr></table><table><tr><td colspan="2"><p>Table 6 Parameters in the scenarios with variable ple.</p></td></tr><tr><td><p>Parameter</p></td><td><p>Value</p></td></tr><tr><td><p>σ</p></td><td><p>5 dB</p></td></tr><tr><td><p>δ</p></td><td><p>5 m</p></td></tr><tr><td><p>Sidelength</p></td><td><p>100 m</p></td></tr><tr><td><p>P</p></td><td><p>-55 dBm</p></td></tr><tr><td><p>N</p></td><td><p>8</p></td></tr></table><p><img src="/media/202408//1724838579.914529.png" /></p><p><img src="/media/202408//1724838579.921601.png" />Fig. 7 CDF of variable SL of the area.</p><p>Fig. 8 RMSE versus variable PLE.</p><p><img src="/media/202408//1724838579.938037.png" /><img src="/media/202408//1724838579.951723.png" /></p><p><img src="/media/202408//1724838579.95331.png" /><img src="/media/202408//1724838579.964919.png" /></p><p><img src="/media/202408//1724838579.96892.png" /><img src="/media/202408//1724838579.976009.png" /><img src="/media/202408//1724838579.98306.png" /><img src="/media/202408//1724838579.997855.png" /></p><table><tr><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td></tr></table><p><img src="/media/202408//1724838580.0131772.png" /></p><p>Fig. 9 CDF of variable PLE.</p><p>change of TP, albeit some fluctuations occur in terms of SDP. The average localization error of TLLA is below 2.5 m com- pared with TLLARSS for 7 m, WLS for 6.5 m, SDP for 5 m, SRWLS for 4 m, SCM for 3 m, and LLS-I for 3.5 m. Besides, the outperformance of the proposed method can also be seen in <a href="#bookmark1">Fig. 11</a>, where TLLA can secure the localization error below 4.3 m at 95 % compared with that of 5.8 m for LLS-I, 5.5 m</p><table><tr><td colspan="2"><p>Table 7 Parameters in the scenario with variable tp.</p></td></tr><tr><td><p>Parameter</p></td><td><p>Value</p></td></tr><tr><td><p>σ</p></td><td><p>5 dB</p></td></tr><tr><td><p>δ</p></td><td><p>5 m</p></td></tr><tr><td><p>Sidelength</p></td><td><p>100 m</p></td></tr><tr><td><p>at</p></td><td><p>3.5</p></td></tr><tr><td><p>N</p></td><td><p>8</p></td></tr></table><p><img src="/media/202408//1724838580.019815.png" /></p><p>Fig. 10 RMSE versus variable TP.</p><p><img src="/media/202408//1724838580.050978.png" /></p><p>Fig. 11 CDF of variable TP.</p><p>for SCM, 14 m for TLLARSS, 9 m for SDP, 10 m for WLS, and 6.5 m for SRWLS.</p><p>6.7. Computational time</p><p>Besides localization accuracy, efficiency is another vital factor that needs to be considered in MSR. In this case, we visualize the corresponding computational time in <a href="#bookmark1">Fig. 12</a> (computa- tional time for SDP and SRWLS refer to <a href="#bookmark1">Table 8</a>). It can be seen from <a href="#bookmark1">Fig. 12</a> that the proposed methods, including TLLA, SCM, TLLATOA, and TLLARSS, are worse than that of LLS-I and WLS. However, in terms of computational time, the pro- posed method is much better than SDP and SRWLS, as in <a href="#bookmark1">Table 8</a>. Although the computational time is not the best among the methods, the average computational time is below 2e-4 s, which seems to be tolerant in the actual situation.</p><p><img src="/media/202408//1724838580.074709.png" /></p><p>Fig. 12 RMSE versus variable side lengths of the area.</p><p>Target localization using information fusion in WSNs-based Marine search and rescue 237</p><table><tr><td colspan="6"><p>Table 8 summary of the computational time.</p></td></tr><tr><td rowspan="2"><p>Method</p></td><td colspan="5"><p>Time for different scenarios (s)</p></td></tr><tr><td><p>Variable Anchors</p></td><td><p>Variable SL</p></td><td><p>Variable Noises</p></td><td><p>Variable PLE</p></td><td><p>Variable TP</p></td></tr><tr><td><p>WLS</p></td><td><p>3.2678e-5</p></td><td><p>3.20856e-5</p></td><td><p>3.3250e-5</p></td><td><p>3.3757e-5</p></td><td><p>3.4213e-5</p></td></tr><tr><td><p>SRWLS</p></td><td><p>0.0022</p></td><td><p>0.0023</p></td><td><p>0.0021</p></td><td><p>0.0021</p></td><td><p>0.0021</p></td></tr><tr><td><p>LLS-I</p></td><td><p>3.7437e-5</p></td><td><p>3.1638e-5</p></td><td><p>3.1819e-5</p></td><td><p>2.9549e-5</p></td><td><p>3.3035e-5</p></td></tr><tr><td><p>SDP</p></td><td><p>0.4781</p></td><td><p>0.4649</p></td><td><p>0.4568</p></td><td><p>0.6529</p></td><td><p>0.4606</p></td></tr><tr><td><p>SCM</p></td><td><p>1.7817e-4</p></td><td><p>1.6831e-4</p></td><td><p>1.7161</p></td><td><p>1.6150e-4</p></td><td><p>1.8801e-4</p></td></tr><tr><td><p>TLLARSS</p></td><td><p>1.9129e-4</p></td><td><p>1.6235e-4</p></td><td><p>1.6626e-4</p></td><td><p>1.5591e-4</p></td><td><p>1.6059e-4</p></td></tr><tr><td><p>TLLATOA</p></td><td><p>1.6569e-4</p></td><td><p>1.3979e-4</p></td><td><p>1.4322e-4</p></td><td><p> </p></td><td><p> </p></td></tr><tr><td><p>TLLA</p></td><td><p>2.0375e-4</p></td><td><p>1.7025e-4</p></td><td><p>1.7562e-4</p></td><td><p>1.8006e-4</p></td><td><p>1.8488e-4</p></td></tr></table><p>7. Conclusion</p><p>This paper proposes a two-step linearization method for tar- get localization in WSNs-based MSR. The hybrid RSS and TOA scheme is presented to eliminate the error with only one measurement exploited on localization. We convert the original localization problem to an HM-ANCLS framework via linearization operation. The SCM is further proposed to figure out the solution of HM-ANCLS via exchanging the index of the potential from the active set and the passive set. Nevertheless, SCM may drop to the local minimum. In this case, the ECM based on the first-order Taylor series expansion is conducted to modify the solution obtained by SCM. To mimic the dynamic situation in the ocean environ- ment, we use the random walk model to make all sensors’ positions changeable at each time slot. Although the pro- posed method’s computational efficiency is worse than some methods in some scenarios, the localization accuracy seems to be the most satisfactory among the methods. Moreover, the average computational time of the proposed method for locating a target at each time slot is less than 2e-4 s, which seems to be tolerant in the actual situation. Therefore, combining the results of the localization accuracy and the computational efficiency, the proposed two-step linearization method could be the better choice for localization in WSNs- based MSR.</p><p>However, in the procedure to form the HM-ANCLS frame- work, we have assumed the corresponding variable is non- negative, seeing from equation <a href="#bookmark1">(9)</a>. It means the proposed method works well only when the coordinate reference system is well-defined. After thousands of simulations, we have fig- ured out that the error of the proposed method would increase once the corresponding variables are negative. In future research, we would like to investigate how to eliminate the assumption and maintain accuracy simultaneously. Besides, another assumption has been made in the paper that all infor- mation acquired is complete. Nevertheless, wireless networks are vulnerable to attack, and the transmission links are also unstable in the ocean environment. It is infeasible to obtain complete information for localization. How to locate a target with missing information is promising research for future work as well. Last but not least, the corresponding results are only verified in the simulation. Another future perspective work that attracts our attention is to verify the proposed method in the natural ocean environment.</p><p>Declaration of Competing Interest</p><p>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</p><p>Acknowledgements</p><p>This work is supported by the National Natural Science Foun- dation of China (No. 52201401, 52201403, 52102397, 61873160, 61672338, 52071200, and 52001093), the National Key Research and Development Program of China (No. 2021YFC2801002), the Shanghai Committee of Science and Technology, China (No. 23010502000), the Shanghai Post- doctoral Excellence Program, China (No. 2022767), the China Postdoctoral Science Foundation (No. 2022M712027, 2021M700790), and Natural Science Foundation of Shanghai, China ( No. 21ZR1426500).</p><p>References</p><p>[1] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0005">W.-C. Ho, J.-H. Shen, C.-P. Liu, Y.-W. Chen, Research on</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0005">Optimal Model of Maritime Search and Rescue Route for</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0005">Rescue of Multiple Distress Targets, J. Mar. Sci. Eng. 10 (2022)</a>.</p><p>[2] M.A. Ismail, S. Ali, S. Khan, Z. Babar, M. Mazhar, A Survey of Indian Ocean Region Maritime Security: Technological Advancements and Innovative Solutions, in: 2021 Int. Conf. Front. Inf. Technol., 2021: pp. 66–71.</p><p>[3] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0015">J.P. Queralta, J. Taipalmaa, B.C. Pullinen, V.K. Sarker, T.N.</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0015">Gia, H. Tenhunen, M. Gabbouj, J. Raitoharju, T. Westerlund,</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0015">Collaborative multi-robot search and rescue: Planning,</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0015">coordination, perception, and active vision, IEEE Access. 8</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0015">(2020) 191617–191643</a>.</p><p>[4] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0020">J. Xian, H. Wu, X. Mei, X. Chen, Y. Yang, Low-Delay and</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0020">Energy-Efficient Opportunistic Routing for Maritime Search</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0020">and Rescue Wireless Sensor Networks, Remote Sens. 14 (2022)</a>.</p><p>[5] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0025">H. Wu, X. Mei, X. Chen, J. Li, J. Wang, P. Mohapatra, A novel</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0025">cooperative localization algorithm using enhanced particle filter</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0025">technique in maritime search and rescue wireless sensor network,</a></p><p><a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0025">ISA Trans. 78 (2018) 39–46</a>.</p><p>[6] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0030">M.M. Hasan, M.A. Rahman, A. Sedigh, A.U. Khasanah, A.T.</a></p><p><a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0030">Asyhari, H. Tao, S.A. Bakar, Search and rescue operation in</a></p><p><a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0030">flooded areas: A survey on emerging sensor networking-enabled</a></p><p><a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0030">IoT-oriented technologies and applications, Cogn. Syst. Res. 67</a></p><p><a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0030">(2021) 104–123</a>.</p><p>[7] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0035">X. Mei, H. Wu, J. Xian, B. Chen, H. Zhang, X. Liu, A. Robust,</a></p><p><a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0035">Non-Cooperative Localization Algorithm in the Presence of</a></p><p><a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0035">Outlier Measurements in Ocean Sensor Networks, Sensors. 19</a></p><p><a id="bookmark2"></a><a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0035">(2019) 2708</a>.</p><p>[8] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0040">H. Luo, K. Wu, Y. Gong, L. Ni, Localization for Drifting</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0040">Restricted Floating Ocean Sensor Networks, IEEE Trans. Veh.</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0040">Technol. 65 (2016) 9968–9981</a>.</p><p>[9] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0045">A. Toky, R.P. Singh, S. Das, Localization schemes for</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0045">underwater acoustic sensor networks-a review, Comput. Sci.</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0045">Rev. 37 (2020) 100241</a>.</p><p>[10] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0050">X. Mei, H. Wu, N. Saeed, T. Ma, J. Xian, Y. Chen, An</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0050">Absorption Mitigation Technique for Received Signal Strength-</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0050">Based Target Localization in Underwater Wireless Sensor</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0050">Networks, Sensors. 20 (2020) 4698</a>.</p><p>[11] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0055">M. Dong, H. Li, R. Yin, Y. Qin, Y. Hu, Scalable asynchronous</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0055">localization algorithm with mobility prediction for underwater</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0055">wireless sensor networks, Chaos, Solitons & Fractals. 143 (2021)</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0055">110588</a>.</p><p>[12] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0060">S. Fattah, A. Gani, I. Ahmedy, M.Y.I. Idris, I.A. Targio</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0060">Hashem, A Survey on Underwater Wireless Sensor Networks:</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0060">Requirements, Taxonomy, Recent Advances, and Open</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0060">Research Challenges, Sensors. 20 (2020) 5393</a>.</p><p>[13] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0065">S. Misra, T. Ojha, SecRET: Secure range-based localization with</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0065">evidence theory for underwater sensor networks, ACM Trans.</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0065">Auton. Adapt. Syst. 15 (2021) 1–26</a>.</p><p>[14] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0070">J. Kim, Hybrid TOA–DOA techniques for maneuvering</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0070">underwater target tracking using the sensor nodes on the sea</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0070">surface, Ocean Eng. 242 (2021) 110110</a>.</p><p>[15] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0075">T.L.N. Nguyen, Y. Shin, An Efficient RSS Localization for</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0075">Underwater Wireless Sensor Networks, Sensors. 19 (2019)</a>.</p><p>[16] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0080">X. Mei, H. Wu, J. Xian, Matrix Factorization based Target</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0080">Localization via Range Measurements with Uncertainty in</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0080">Transmit Power, IEEE Wirel. Commun. Lett. 9 (2020) 1611–</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0080">1615</a>.</p><p>[17] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0085">X. Mei, H. Wu, J. Xian, B. Chen, RSS-based Byzantine Fault-</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0085">tolerant Localization Algorithm under NLOS Environment,</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0085">IEEE Commun. Lett. 25 (2021) 474–478</a>.</p><p>[18] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0090">N. Saeed, A. Celik, T.Y. Al-Naffouri, M.-S. Alouini,</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0090">Underwater optical wireless communications, networking, and</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0090">localization: A survey, Ad Hoc Networks. 94 (2019) 101935</a>.</p><p>[19] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0095">R. Diamant, R. Francescon, A Graph Localization Approach</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0095">for Underwater Sensor Networks to Assist a Diver in Distress,</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0095">Sensors. 21 (2021) 1306</a>.</p><p>[20] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0100">C. Zhao, G. Qiao, F. Zhou, N. Ahmed, Underwater localisation</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0100">correction method for drifting anchor nodes with an extra</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0100">floating anchor node, IET Radar, Sonar Navig. 14 (2020) 1494–</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0100">1501</a>.</p><p>[21] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0105">S. Sun, S. Qin, Y. Hao, G. Zhang, C. Zhao, Underwater</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0105">Acoustic Localization of the Black Box Based on Generalized</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0105">Second-Order Time Difference of Arrival, GSTDOA), IEEE</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0105">Trans. Geosci. Remote Sens., 2020</a>.</p><p>[22] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0110">X. Mei, Y. Chen, X. Xu, H. Wu, RSS Localization Using</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0110">Multistep Linearization in the Presence of Unknown Path Loss</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0110">Exponent, IEEE Sensors Lett. 6 (2022) 1–4</a>.</p><p>[23] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0115">X. Mei, D. Han, N. Saeed, H. Wu, C.-C. Chang, B. Han, T. Ma,</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0115">J. Xian, Trajectory Optimization of Autonomous Surface</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0115">Vehicles with Outliers for Underwater Target Localization,</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0115">Remote Sens. 14 (2022) 4343</a>.</p><p>[24] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0120">X. Mei, D. Han, N. Saeed, H. Wu, T. Ma, J. Xian, Range</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0120">Difference-based Target Localization under Stratification Effect</a></p><p><a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0120">and NLOS bias in UWSNs, IEEE Wirel. Commun. Lett. 11</a></p><p><a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0120">(2022) 2080–2084</a>.</p><p>[25] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0125">M. Hosseini, New hybrid RSS-based localization mechanism for</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0125">underwater wireless sensor networks, Int. J. Comput. Commun.</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0125">Networks. 1 (2011)</a>.</p><p>[26] R. Diamant, H.-P. Tan, L. Lampe, NLOS identification using a hybrid ToA-signal strength algorithm for underwater acoustic localization, in: Ocean. 2010 MTS/IEEE SEATTLE, IEEE, 2010: pp. 1–7.</p><p>[27] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0135">S. Tomic, M. Beko, M. Tuba, V.M.F. Correia, Target</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0135">Localization in NLOS Environments Using RSS and TOA</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0135">Measurements, IEEE Wirel. Commun. Lett. 7 (2018) 1062–</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0135">1065</a>.</p><p>[28] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0140">M. Katwe, P. Ghare, P.K. Sharma, A. Kothari, NLOS Error</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0140">Mitigation in Hybrid RSS-TOA-Based Localization Through</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0140">Semi-Definite Relaxation, IEEE Commun. Lett. 24 (2020) 2761–</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0140">2765</a>.</p><p>[29] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0145">K. Panwar, M. Katwe, P. Babu, P. Ghare, K. Singh, A</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0145">Majorization-Minimization Algorithm for Hybrid TOA-RSS</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0145">Based Localization in NLOS Environment, IEEE Commun.</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0145">Lett. 26 (2022) 1017–1021</a>.</p><p>[30] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0150">X. Chen, J. Ling, S. Wang, Y. Yang, L. Luo, Y. Yan, Ship</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0150">detection from coastal surveillance videos via an ensemble</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0150">Canny-Gaussian-morphology framework, J. Navig. 74 (2021)</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0150">1252–1266</a>.</p><p>[31] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0155">R.P. Kanwal, K.C. Liu, A Taylor expansion approach for</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0155">solving integral equations, Int. J. Math. Educ. Sci. Technol. 20</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0155">(1989) 411–414</a>.</p><p>[32] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0160">H. Wu, J. Wang, R.R. Ananta, V.R. Kommareddy, R. Wang, P.</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0160">Mohapatra, Prediction based opportunistic routing for maritime</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0160">search and rescue wireless sensor network, J. Parallel Distrib.</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0160">Comput. 111 (2018) 56–64</a>.</p><p>[33] G. Cimini, A. Bemporad, Exact Complexity Certification of Active-Set Methods for Quadratic Programming, IEEE Trans. Automat. Contr. 62 (2017) 6094–6109.</p><p>[34] N. Saraf, A. Bemporad, A bounded-variable least-squares solver based on stable QR updates, IEEE Trans. Automat. Contr. (2019) 1.</p><p>[35] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0175">S. Kay, A fast and accurate single frequency estimator, IEEE</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0175">Trans. Acoust. 37 (1989) 1987–1990</a>.</p><p>[36] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0180">S. Tomic, M. Beko, Target Localization via Integrated and</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0180">Segregated Ranging Based on RSS and TOA Measurements,</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0180">Sensors. 19 (2019)</a>.</p><p>[37] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0185">S. Tomic, M. Beko, M. Tuba, A Linear Estimator for Network</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0185">Localization Using Integrated RSS and AOA Measurements,</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0185">IEEE Signal Process. Lett. 26 (2019) 405–409</a>.</p><p>[38] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0190">Y. Wang, Linear least squares localization in sensor networks,</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0190">EURASIP J. Wirel. Commun. Netw. 2015 (2015) 51</a>.</p><p>[39] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0195">T. Nordam, R. Nepstad, E. Litzler, J. Rhrs, On the use of</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0195">random walk schemes in oil spill modelling, Mar. Pollut. Bull.</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0195">146 (2019) 631–638</a>.</p><p>[40] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0200">M.R. Gholami, R.M. Vaghefi, E.G. Strm, RSS-Based Sensor</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0200">Localization in the Presence of Unknown Channel Parameters,</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0200">IEEE Trans. Signal Process. 61 (2013) 3752–3759</a>.</p><p>[41] <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0205">S.Y. Seidel, T.S. Rappaport, 914 MHz path loss prediction</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0205">models for indoor wireless communications in multifloored</a> <a href="http://refhub.elsevier.com/S1110-0168(23)00043-1/h0205">buildings, IEEE Trans. Antennas Propag. 40 (1992) 207–217</a>.</p>
刘世财
2024年8月28日 17:49
转发文档
收藏文档
上一篇
下一篇
手机扫码
复制链接
手机扫一扫转发分享
复制链接
Markdown文件
HTML文件
PDF文档(打印)
分享
链接
类型
密码
更新密码